典型文献
工业设备的健康状态评估和退化趋势预测联合研究
文献摘要:
工业设备作为工业互联网的基本组成部分,其健康状态事关工业产品的质量水平和生产过程的稳定性以及流畅性.因此,对工业设备的健康状态进行评估和退化趋势预测具有重要的理论价值和工程实践意义.本文基于深度学习方法,拟构建双任务框架,实现工业设备的健康状态评估和退化趋势预测联合研究.具体来说,首先对工业设备的监测信号进行时域和频域特征提取,使用LightGBM选择强相关性的特征,通过主成分分析降维建立健康指标,并构建健康状态的类别标签;接着发展领域自适应的迁移学习算法,即流形空间分布对齐,将源域和目标域在特征层面进行迁移,完成源域和目标域的分布对齐;最后,融合因果膨胀卷积、双向门控循环单元以及注意力机制技术,设计了双任务深度网络框架,实现了工业设备的健康状态评估和退化趋势预测的双功能.本文方法有效解决了单独研究工业设备的健康状态评估或退化趋势预测的缺陷,可以同时对设备进行状态进行实时定性分析(健康状态)和定量分析(剩余使用寿命).最后,以工业关键部件的轴承和刀具为例,通过和当前流行的深度学习方法比较,实验结果验证了本文所提的方法能够实现双任务功能以及显著提升退化趋势预测的精度.
文献关键词:
健康状态评估;退化趋势预测;流行空间分布对齐;因果膨胀卷积;注意力机制
中图分类号:
作者姓名:
张永;龚众望;郑英;谢林柏;张泽;刘振兴
作者机构:
武汉科技大学信息科学与工程学院,武汉430081;华中科技大学人工智能与自动化学院,武汉430074;江南大学物联网工程学院,无锡214122;亚马逊公司,西雅图98109,美国
文献出处:
引用格式:
[1]张永;龚众望;郑英;谢林柏;张泽;刘振兴-.工业设备的健康状态评估和退化趋势预测联合研究)[J].中国科学(技术科学),2022(01):180-197
A类:
因果膨胀卷积,流行空间分布对齐
B类:
工业设备,健康状态评估,退化趋势预测,联合研究,工业互联网,工业产品,质量水平,流畅性,理论价值,深度学习方法,双任务,具体来说,监测信号,频域特征,LightGBM,强相关性,健康指标,领域自适应,迁移学习,流形,源域,目标域,双向门控循环单元,注意力机制,深度网络,网络框架,双功能,剩余使用寿命,关键部件,轴承,刀具,方法比较
AB值:
0.235548
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。