首站-论文投稿智能助手
典型文献
Preface to the special issue on"Recent Advances in Functional Fibers"
文献摘要:
Fiber is one of the most fundamental material forms seen in human life.Befitting from their long and bendable shape,fibers with different specialties and different dimensions are used in a multitude of applications,ranging from fabrics[1]to telecommunications[2],from generating laser[3]to sensing and actuating,etc.[4-6].In recent years,major breakthroughs were made,demonstrating that fibers have novel optical[7-9],electronic[10],acoustic[11,12]and cell interfacing[13,14]properties that enable new func-tionalities.Functional fibers and related application research are at the crossroads of many disciplines,including optics,materials science,device physics,nanotechnology,and fluid dynamics.
文献关键词:
作者姓名:
Lei Wei;Guangming Tao;Chong Hou;Wei Yan
作者机构:
School of Electrical and Electronic Engineering,Nanyang Technological University,Singapore 639798,Singapore;Wuhan National Laboratory for Optoelectronics and Sport and Health Initiative,Optical Valley Laboratory,Huazhong University of Science and Technology,Wuhan 430074,China;State Key Laboratory of Material Processing and Die and Mould Technology,School of Materials Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;School of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan 430074,China;School of Materials Science and Engineering,Nanyang Technological University,Singapore 639798,Singapore
引用格式:
[1]Lei Wei;Guangming Tao;Chong Hou;Wei Yan-.Preface to the special issue on"Recent Advances in Functional Fibers")[J].光电子前沿(英文版),2022(04):150-153
A类:
Befitting,tionalities
B类:
Preface,issue,Recent,Advances,Functional,Fibers,one,most,fundamental,forms,seen,human,life,from,their,long,bendable,shape,fibers,different,specialties,dimensions,are,used,multitude,applications,ranging,fabrics,telecommunications,generating,laser,sensing,actuating,etc,In,recent,years,major,breakthroughs,were,made,demonstrating,that,have,novel,optical,electronic,acoustic,cell,interfacing,properties,enable,new,func,related,research,crossroads,many,disciplines,including,optics,materials,science,device,physics,nanotechnology,fluid,dynamics
AB值:
0.736672
相似文献
Photonic matrix multiplication lights up photonic accelerator and beyond
Hailong Zhou;Jianji Dong;Junwei Cheng;Wenchan Dong;Chaoran Huang;Yichen Shen;Qiming Zhang;Min Gu;Chao Qian;Hongsheng Chen;Zhichao Ruan;Xinliang Zhang-Wuhan National Laboratory for Optoelectronics,Huazhong University of Science and Technology,Wuhan 430074,China;Department of Electronic Engineering,The Chinese University of Hong Kong,Shatin,Hong Kong,China;Lightelligence,Hangzhou 311121,China;Institute of Photonic Chips,University of Shanghai for Science and Technology,Shanghai 200093,China;Centre for Artificial-Intelligence Nanophotonics,School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Interdisciplinary Center for Quantum Information,State Key Laboratory of Modern Optical Instrumentation,ZJU-Hangzhou Global Scientific and Technological Innovation Center,ZJU-UIUC Institute,Zhejiang University,Hangzhou 310027,China;Interdisciplinary Center of Quantum Information,State Key Laboratory of Modern Optical Instrumentation,and Zhejiang Province Key Laboratory of Quantum Technology and Device,Department of Physics,Zhejiang University,Hangzhou 310027,China
Revealing the nature of optical activity in carbon dots produced from different chiral precursor molecules
Ananya Das;Evgeny V.Kundelev;Anna A.Vedernikova;Sergei A.Cherevkov;Denis V.Danilov;Aleksandra V.Koroleva;Evgeniy V.Zhizhin;Anton N.Tsypkin;Aleksandr P.Litvin;Alexander V.Baranov;Anatoly V.Fedorov;Elena V.Ushakova;Andrey L.Rogach-Center of Information Optical Technologies,ITMO University,Saint Petersburg 197101,Russia;Research Park,Saint Petersburg State University,Saint Petersburg 199034,Russia;Laboratory of Femtosecond Optics and Femtotechnology,ITMO University,Saint Petersburg 197101,Russia;Laboratory of Quantum Processes and Measurements,ITMO University,Saint Petersburg 197101,Russia;Department of Materials Science and Engineering,and Centre for Functional Photonics(CFP),City University of Hong Kong,Kowloon,Hong Kong SAR 999077,China;Shenzhen Research Institute,City University of Hong Kong,Shenzhen 518057,China
Light-induced tumor theranostics based on chemical-exfoliated borophene
Zhongjian Xie;Yanhong Duo;Taojian Fan;Yao Zhu;Shuai Feng;Chuanbo Li;Honglian Guo;Yanqi Ge;Shakeel Ahmed;Weichun Huang;Huiling Liu;Ling Qi;Rui Guo;Defa Li;Paras N.Prasad;Han Zhang-Institute of Pediatrics,Shenzhen Children's Hospital,Shenzhen,Guangdong,China;Shenzhen Engineering Laboratory of phosphorene and Optoelectronics;International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education,Shenzhen Institute of Translational Medicine,Department of Otolaryngology,Shenzhen Second People's Hospital,the First Affiliated Hospital,Institute of Microscale Optoelectronics,Shenzhen University,518060 Shenzhen,China;Department of Microbiology,Tumor and Cell Biology(MTC),Karolinska Institute,Stockholm,Sweden;Shenzhen Medical Ultrasound Engineering Center,Department of Ultrasonography,Shenzhen People's Hospital,Second Clinical Medical College of Jinan University,First Clinical Medical College of Southern University of Science and Technology,518020 Shenzhen,China;Optoelectronics Research Center,School of Science,Minzu University of China,100081 Beijing,PR China;Nantong Key Lab of Intelligent and New Energy Materials,College of Chemistry and Chemical Engineering,Nantong University,226019 Nantong,Jiangsu,China;Key Laboratory of Biomaterials of Guangdong Higher Education Institutes,Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development,Department of Biomedical Engineering,Jinan University,510632 Guangzhou,China;Department of Core Medical Laboratory,the Sixth Affiliated Hospital of Guangzhou Medical University,Qingyuan People's Hospital,Qingyuan,Guang Dong Province,China;Department of Laboratory Medicine,Shenzhen Children's Hospital,Shenzhen,Guangdong,China;Institute for Lasers,Photonics,and Biophotonics and Department of Chemistry,University at Buffalo,State University of New York,Buffalo,NY,USA
Terahertz structured light:nonparaxial Airy imaging using silicon diffractive optics
Rusnè lva?kevi?iūtè-Povilauskienè;Paulius Kizevi?ius;Ernestas Nacius;Domas Jokubauskis;K?stutis lkamas;Alvydas Lisauskas;Natalia Alexeeva;leva Matulaitienè;Vytautas Jukna;Sergej Orlov;Linas Minkevi?ius;Gintaras Valu?is-Department of Optoelectronics,Center for Physical Sciences and Technology,Sauletekio av.3,Vilnius 10257,Lithuania;Department of Fundamental Research,Center for Physical Sciences and Technology,Saulètekio av.3,Vilnius 10257,Lithuania;Institute of Applied Electrodynamics&Telecommunications,Vilnius University,Saulètekio av.3,Vilnius 10257,Lithuania;CENTERA Labs.,Institute of High Pressure Physics PAS,ul.Sokolowska 29/37,Warsaw 01-142,Poland;Department of Organic Chemistry,Center for Physical Sciences and Technology,Saulètekio av.3,Vilnius 10257,Lithuania;Institute of Photonics and Nanotechnology,Department of Physics,Vilnius University,Saulètekio av.3,Vilnius 10257,Lithuania
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。