首站-论文投稿智能助手
典型文献
High-performance fiber strain sensor of carbon nanotube/thermoplastic polyurethane@styrene butadiene styrene with a double percolated structure
文献摘要:
In this work,a high-performance fiber strain sensor is fabricated by constructing a double percolated structure,consisting of carbon nanotube(CNT)/thermoplastic polyurethane(TPU)continuous phase and styrene butadiene styrene(SBS)phase,incompatible with TPU(CNT/TPU@SBS).Compared with other similar fiber strain sensor systems without double percolated structure,the CNT/TPU@SBS sensor achieves a lower percolation threshold(0.38 wt.%)and higher electrical conductivity.The conductivity of 1%-CNT/TPU@SBS(4.12×10-3 S·m-1)is two orders of magnitude higher than that of 1%-CNT/TPU(3.17×10-5 S·m-1)at the same CNT loading of 1 wt.%.Due to double percolated structure,the 1%-CNT/TPU@SBS sensor exhibits a wide strain detection range(0.2%-100%)and an ultra-high sensitivity(maximum gauge factor(GF)is 32411 at 100%strain).Besides,the 1%-CNT/TPU@SBS sensor shows a high linearity(R2=0.97)at 0%-20%strain,relatively fast response time(214 ms),and stability(500 loading/unloading cycles).The designed sensor can efficiently monitor physiological signals and movements and identify load distribution after being woven into a sensor array,showing broad application prospects in wearable electronics.
文献关键词:
作者姓名:
Dong XIANG;Libing LIU;Xiaoyu CHEN;Yuanpeng WU;Menghan WANG;Jie ZHANG;Chunxia ZHAO;Hui LI;Zhenyu LI;Ping WANG;Yuntao LI
作者机构:
School of New Energy and Materials,Southwest Petroleum University,Chengdu 610500,China;State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China;The Center of Functional Materials for Working Fluids of Oil and Gas Field,Southwest Petroleum University,Chengdu 610500,China;College of Materials Science and Engineering,Chongqing University,Chongqing 400030,China;School of Mechatronic Engineering,Southwest Petroleum University,Chengdu 610500,China
文献出处:
引用格式:
[1]Dong XIANG;Libing LIU;Xiaoyu CHEN;Yuanpeng WU;Menghan WANG;Jie ZHANG;Chunxia ZHAO;Hui LI;Zhenyu LI;Ping WANG;Yuntao LI-.High-performance fiber strain sensor of carbon nanotube/thermoplastic polyurethane@styrene butadiene styrene with a double percolated structure)[J].材料学前沿,2022(01):99-110
A类:
percolated
B类:
High,performance,fiber,strain,sensor,carbon,nanotube,thermoplastic,polyurethane,styrene,butadiene,double,structure,In,this,work,fabricated,by,constructing,consisting,CNT,TPU,continuous,phase,SBS,incompatible,Compared,other,similar,systems,without,achieves,lower,percolation,threshold,wt,higher,electrical,conductivity,two,orders,magnitude,that,same,Due,exhibits,wide,detection,range,ultra,sensitivity,maximum,gauge,GF,Besides,shows,linearity,relatively,fast,response,stability,unloading,cycles,designed,can,efficiently,monitor,physiological,signals,movements,identify,distribution,after,being,woven,into,array,showing,broad,application,prospects,wearable,electronics
AB值:
0.489093
相似文献
Structure-dependent electromagnetic wave absorbing properties of bowl-like and honeycomb TiO2/CNT composites
Hua Jian;Qinrui Du;Qiaoqiao Men;Li Guan;Ruosong Li;Bingbing Fan;Xin Zhang;Xiaoqin Guo;Biao Zhao;Rui Zhang-Henan Key Laboratory of Aeronautical Materials and Application Technology,School of Material Science and Engineering,Zhengzhou University of Aeronautics,Zhengzhou 450046,China;School of Chemical Engineering,Northwest University,Xi'an 710069,China;Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China;School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China;Zhengzhou Research Institute for Abrasives & Grinding Co.,Ltd.,Zhengzhou 450001,China;School of Material Science and Engineering,Luoyang Institute of Science and Technology,Luoyang 471023,China
Medium-entropy(Me,Ti)0.1(Zr,Hf,Ce)0.9O2(Me=Y and Ta):Promising thermal barrier materials for high-temperature thermal radiation shielding and CMAS blocking
Shuaihang Qiu;Huimin Xiang;Fu-Zhi Dai;Hailong Wang;Muzhang Huang;Chunlei Wan;Qing Meng;Jiangtao Li;Xiaohui Wang;Yanchun Zhou-Science and Technology on Advanced Functional Composite Laboratory,Aerospace Research Institute of Materials and Processing Technology,Beijing 100076,China;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China;State Key Lab of New Ceramics and Fine Processing,School of Materials Science and Engineering,Tsinghua University,Beijing 100084,China;Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China;Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China
Microstructure evolution and deformation mechanism of α+β dual-phase Ti-xNb-yTa-2Zr alloys with high performance
Ting Zhang;Daixiu Wei;Eryi Lu;Wen Wang;Kuaishe Wang;Xiaoqing Li;Lai-Chang Zhang;Hidemi Kato;Weijie Lu;Liqiang Wang-State Key Laboratory of Metal Matrix Composites,School of Material Science and Engineering,Shanghai Jiao Tong University,Shanghai,200240,China;School of Metallurgical Engineering,Xi'an University of Architecture and Technology,Xi'an,710055,China;Institute for Materials Research,Tohoku University,2-1-1 Katahira,Sendai,Miyagi,980-8577,Japan;Department of Stomatology,Renji Hospital,School of Medicine,Shanghai Jiao Tong University,Shanghai,200127,China;Department of Materials Science and Engineering,KTH-Royal Institute of Technology,10044,Stockholm,Sweden;School of Engineering,Edith Cowan University,270 Joondalup Drive,Joondalup,Perth,WA 6027,Australia
Chlorine-rich lithium argyrodites enables superior performances for solid-state Li-Se batteries at wide temperature range
Jin-Yan Lin;Shuai Chen;Jia-Yang Li;Dian Yu;Xiang-Ling Xu;Chuang Yu;Shao-Qing Chen;Xue-Fei Miao;Lin-Feng Peng;Chao-Chao Wei;Chong-Xuan Liu;Shi-Jie Cheng;Jia Xie-State Key Laboratory of Advanced Electromagnetic Engineering and Technology,School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;School of Materials,Huazhong University of Science and Technology,Wuhan 430074,China;Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China;Key Laboratory of Advanced Metallic and Intermetallic Materials Technology,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China
Highly stretchable,sensitive and wide linear responsive fabric-based strain sensors with a self-segregated carbon nanotube(CNT)/Polydimethylsiloxane(PDMS)coating
Libing Liu;Xuezhong Zhang;Dong Xiang;Yuanpeng Wu;Dan Sun;Jiabin Shen;Menghan Wang;Chuinxia Zhao;Hui Li;Zhenyu Li;Ping Wang;Yuntao Li-School of New Energy and Materials,Southwest Petroleum University,Chengdu,610500,China;The Center of Functional Materials for Working Fluids of Oil and Gas Field,Southwest Petroleum University,Chengdu,610500,China;School of Mechanical and Aerospace Engineering,Queen's University Belfast,Belfast,BT9 5AH,UK;State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University,Chengdu,610065,China;College of Materials Science and Engineering Chongqing University,Chongqing 400030,China
Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials
Zijun He;Zheng Qi;Huichao Liu;Kangyan Wang;Leslie Roberts;Jefferson Z.Liu;Yilun Liu;Stephen J.Wang;Mark J.Cook;George P.Simon;Ling Qiu;Dan Li-Department of Chemical Engineering,The University of Melbourne,Melbourne 3010,Australia;Department of Materials Science and Engineering,Monash University,Melbourne 3800,Australia;Department of Chemical Engineering,Monash University,Melbourne 3800,Australia;State Key Laboratory for Strength and Vibration of Mechanical Structures,School of Aerospace Engineering,Xi'an Jiaotong University,Xi'an 710049,China;Neurophysiology Department,Department of Neurology and Neurological Research,St Vincent's Hospital,Melbourne 3065,Australia;Department of Medicine,St.Vincent's Hospital,University of Melbourne,Melbourne 3010,Australia;Department of Mechanical Engineering,University of Melbourne,Melbourne 3010,Australia;Department of Design,Monash University,Melbourne 3145,Australia;School of Design,The Hong Kong Polytechnic University,Hong Kong 999077,China;Shenzhen Geim Graphene Center,Tsinghua-Berkeley Shenzhen Institute,Tsinghua University,Shenzhen 518055,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。