首站-论文投稿智能助手
典型文献
Regulating local charges of atomically dispersed Moδ+sites by nitrogen coordination on cobalt nanosheets to trigger water dissociation for boosted hydrogen evolution in alkaline media
文献摘要:
Now,Pt-based materials are still the best catalysts for hydrogen evolution reaction(HER).Nevertheless,the scarcity of Pt makes it impossible for the large-scale applications in industry.Although cobalt is taken as an excellent HER catalyst due to its suitable H*binding,its alkali HER catalytic property need to be improved because of the sluggish water dissociation kinetics.In this work,nitrogen with small atomic radius and metallophilicity is employed to adjust local charges of atomically dispersed Moδ+sites on Co nanosheets to trigger water dissociation.Theoretical calculations suggest that the energy barrier of water dissociation can be effectively reduced by introducing nitrogen coordinated Moδ+sites.To realize this speculation,atomically dispersed Moδ+sites with nitrogen coordination of Mo(N)/Co were prepared via reconstruction of CoMoO4.High angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)and X-ray absorption spectroscopy(XAS)demonstrate the coordination of N atoms with atomically dispersed Mo atoms,leading to the local charges of atomically dispersed Moδ+sites in Mo(N)/Co.The measurement from ambient pressure X-ray photoelectron spectroscopy(AP-XPS)reveals that the Moδ+sites promote the adsorption and activation of water molecule.Therefore,the Mo(N)/Co exhibits an excellent activity,which need only an overpotential of 39 mV to reach the current density of 10 mA cm-2.The proposed strategy provides an advance pathway to design and boost alkaline HER activity at the atomic-level.
文献关键词:
作者姓名:
Maoqi Cao;Kang Liu;Yao Song;Chao Ma;Yiyang Lin;Huangjingwei Li;Kejun Chen;Junwei Fu;Hongmei Li;Jun Luo;Yida Zhang;Xusheng Zheng;Junhua Hu;Min Liu
作者机构:
School of Chemistry and Chemical Engineering,Qiannan Normal University for Nationalities,Duyun 558000,Guizhou,China;State Key Laboratory of Powder Metallurgy,School of Physics and Electronics,Shenzhen Research Institute,School of Physical and Electronics,Central South University,Changsha 410083,Hunan,China;School of Materials Science and Engineering,Central South University of Forestry and Technology,Changsha 410004,Hunan,China;School of Materials Science and Engineering,Hunan University,Changsha 410082,Hunan,China;National Synchrotron Radiation Laboratory,University of Science and Technology of China,Hefei 230029,Anhui,China;School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,Henan,China
文献出处:
引用格式:
[1]Maoqi Cao;Kang Liu;Yao Song;Chao Ma;Yiyang Lin;Huangjingwei Li;Kejun Chen;Junwei Fu;Hongmei Li;Jun Luo;Yida Zhang;Xusheng Zheng;Junhua Hu;Min Liu-.Regulating local charges of atomically dispersed Moδ+sites by nitrogen coordination on cobalt nanosheets to trigger water dissociation for boosted hydrogen evolution in alkaline media)[J].能源化学,2022(09):125-132
A类:
+sites,metallophilicity
B类:
Regulating,local,charges,atomically,dispersed,by,nitrogen,coordination,cobalt,nanosheets,trigger,water,dissociation,boosted,hydrogen,evolution,alkaline,media,Now,Pt,materials,still,best,catalysts,reaction,HER,Nevertheless,scarcity,makes,impossible,large,scale,applications,industry,Although,taken,excellent,due,suitable,binding,catalytic,property,need,improved,because,sluggish,kinetics,In,this,work,small,radius,employed,adjust,Theoretical,calculations,suggest,that,energy,barrier,effectively,reduced,introducing,coordinated,To,realize,speculation,were,prepared,via,reconstruction,CoMoO4,High,angle,annular,dark,field,scanning,transmission,microscopy,HAADF,STEM,ray,absorption,spectroscopy,XAS,demonstrate,atoms,leading,measurement,from,ambient,pressure,photoelectron,AP,XPS,reveals,promote,adsorption,activation,molecule,Therefore,exhibits,activity,which,only,overpotential,mV,reach,current,density,mA,proposed,strategy,provides,advance,pathway,design,level
AB值:
0.515638
相似文献
Green and selective hydrogenation of aromatic diamines over the nanosheet Ru/g-C3N4-H2 catalyst prepared by ultrasonic assisted impregnation-deposition method
Huanhuan Yang;Liguo Wang;Shuang Xu;Yan Cao;Peng He;Jiaqiang Chen;Zheng Zheng;Huiquan Li-Key Laboratory of Green Process and Engineering,National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology,Institute of Process Engineering,Chinese Academy of Sciences,Beijing,100190,China;Chemical and Biochemical Engineering,Technical University of Denmark,Lyngby 2800 Kgs,Denmark;Sino-Danish College,University of Chinese Academy of Sciences,Beijing,100049,China;Sino-Danish Center for Education and Research,University of Chinese Academy of Sciences,Beijing,100049,China;Dalian National Laboratory for Clean Energy,Dalian,116023,China;School of Chemical Engineering,University of Chinese Academy of Sciences,Beijing,100049,China
Se-NiSe2 hybrid nanosheet arrays with self-regulated elemental Se for efficient alkaline water splitting
Xiang Peng;Yujiao Yan;Shijian Xiong;Yaping Miao;Jing Wen;Zhitian Liu;Biao Gao;Liangsheng Hu;Paul K.Chu-Hubei Key Laboratory of Plasma Chemistry and Advanced Materials,Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials,Wuhan Institute of Technology,Wuhan 430205,China;Department of Physics,Department of Materials Science and Engineering,Department of Biomedical Engineering,City University of Hong Kong,Tat Chee Avenue,Kowloon,Hong Kong,China;School of Textile Science and Engineering,Xi'an Polytechnic University,Xi'an 710048,China;State Key Laboratory of Refractories and Metallurgy,Institute of Advanced Materials and Nanotechnology,Wuhan University of Science and Technology,Wuhan 430081,China;Department of Chemistry,Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province,Shantou University,Shantou 515063,China
Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide
Huachuan Sun;Linfeng Li;Hsiao-Chien Chen;Delong Duan;Muhammad Humayun;Yang Qiu;Xia Zhang;Xiang Ao;Ying Wu;Yuanjie Pang;Kaifu Huo;Chundong Wang;Yujie Xiong-School of Optical and Electronic Information,Wuhan National Laboratory for Optoelectronics,Optics Valley Laboratory,Huazhong University of Science and Technology,Wuhan 430074,China;Center for Reliability Science and Technologies,Chang Gung University,Taoyuan 33302,China;Kidney Research Center,Department of Nephrology,Chang Gung Memorial Hospital,Linkou,Taoyuan 33305,China;School of Chemistry and Materials Science,University of Science and Technology of China,Hefei 230026,China;Pico Center,SUSTech Core Research Facilities,Southern University of Science and Technology,Shenzhen 518055,China;College of Chemistry and Chemical Engineering,Tarim University,Alaer 843300,China
Interface engineering of snow-like Ru/RuO2 nanosheets for boosting hydrogen electrocatalysis
Juntao Zhang;Guomian Ren;Deyu Li;Qingyu Kong;Zhiwei Hu;Yong Xu;Suling Wang;Lu Wang;Maofeng Cao;Xiaoqing Huang-State Key Laboratory of Physical Chemistry of Solid Surfaces,College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China;Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices,Collaborative Innovation Center of Advanced Energy Materials,School of Materials and Energy,Guangdong University of Technology,Guangzhou 510006,China;Institute of Functional Nano&Soft Materials,Jiangsu Key Laboratory for Carbon-Based Functional Materials&Devices,Soochow University,Suzhou 215123,China;Société Civile Synchrotron SOLEIL,L'Orme des Merisiers,Saint-Aubin 91192,France;School of Physics Science and Information Engineering,Shandong Key Laboratory of Optical Communication Science and Technology,Liaocheng University,Liaocheng 252059,China;Max Planck Institute for Chemical Physics of Solids,Dresden 01187,Germany
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。