首站-论文投稿智能助手
典型文献
Building ultra-stable K-Te battery by molecular regulation
文献摘要:
Tellurium(Te)is an ideal electrode for potassium ion batteries(PIBs)owing to its excellent electronic conductivity and high volumetric capacity.However,the Te electrode is prone to capacity fading as the shuttle effect.To address this challenge,we propose molecular regulated Se-Te solid solutions on N-doped porous carbon as the PIBs electrode.After optimizing the Se content in Se-Te solid solutions,the resultant SeTe6.8 on N-doped porous carbon(SeTe6.8@C)delivered a capacity of over 400 mAh g-1 with a flat plateau of 1.0 V at 500 mA g-1.It also achieved a superiorly long cycle life,running for more than 1600 cycles(over 7 months with 0.015%degeneration per cycle)at 100 mA g-1 and excellent rate performance(179.9 mAh g-1 at 10000 mA g-1).This remarkable electrochemical energy storage of the Te electorde likely arises from suppression of the shuttle effect after doping the Te with strongly electroneg-ative Se atoms(forming K5Te3 which is not easily soluble in electrolyte).This study presents a fresh approach for designing and developing ultra-stable Te-based electrodes for PIBs and beyond.
文献关键词:
作者姓名:
Jiawan Zhou;Dongyang Shen;Xinzhi Yu;Bingan Lu
作者机构:
School of Physics and Electronics,Hunan University,Changsha 410082,Hunan,China;College of Science,Hunan University of Technology and Business,Changsha 410205,Hunan,China
文献出处:
引用格式:
[1]Jiawan Zhou;Dongyang Shen;Xinzhi Yu;Bingan Lu-.Building ultra-stable K-Te battery by molecular regulation)[J].能源化学,2022(06):100-107
A类:
Tellurium,SeTe6,superiorly,electorde,electroneg,K5Te3
B类:
Building,ultra,stable,battery,by,molecular,regulation,ideal,potassium,batteries,PIBs,owing,its,excellent,electronic,conductivity,high,volumetric,capacity,However,prone,fading,shuttle,effect,To,address,this,challenge,propose,regulated,solid,solutions,doped,porous,carbon,After,optimizing,content,resultant,delivered,over,mAh,flat,plateau,It,also,achieved,long,life,running,more,than,cycles,months,degeneration,rate,performance,This,remarkable,electrochemical,energy,storage,likely,arises,from,suppression,after,doping,strongly,ative,atoms,forming,which,not,easily,soluble,electrolyte,study,presents,fresh,approach,designing,developing,electrodes,beyond
AB值:
0.528088
相似文献
High-performance Si-Containing anode materials in lithium-ion batteries:A superstructure of Si@Co–NC composite works effectively
Qiongguang Li;Yanhong Wang;Jing Yu;Menglei Yuan;Qiangqiang Tan;Ziyi Zhong;Fabing Su-School of Chemical Engineering,University of Chinese Academy of Sciences,100049,Beijing,China;State Key Laboratory of Multiphase Complex Systems,CAS Key Laboratory of Green Process Engineering,Institute of Process Engineering,Chinese Academy of Sciences,Beijing,100190,China;Zhongke Langfang Institute of Process Engineering,Fenghua Road No 1,Langfang Economic&Technical Development Zone,Hebei Province,065001,China d College of Engineering,Guangdong Technion Israel Institute of Technology(GTIIT),241 Daxue Road,Jinping District,Shantou,515063,China;Technion Israel Institute of Technology(IIT),Haifa,32000,Israel;Institute of Industrial Chemistry and Energy Technology,Shenyang University of Chemical Technology,Shenyang,110142,China
Carbonized waste milk powders as cathodes for stable lithium-sulfur batteries with ultra-large capacity and high initial coulombic efficiency
Rabia Khatoon;Sanam Attique;Rumin Liu;Sajid Rauf;Nasir Ali;Luhong Zhang;Yu-Jia Zeng;Yichuan Guo;Yusuf Valentino Kaneti;Jongbeom Na;Haichao Tang;Hongwen Chen;Yang Tian;Jianguo Lu-State Key Laboratory of Silicon Materials,Key Laboratory for Biomedical Engineering of Ministry of Education,School of Materials Science and Engineering,Zhejiang University,Hangzhou,310027,China;Institute for Composites Science Innovation,School of Materials Science and Engineering,Zhejiang University,Hangzhou,310027,China;Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials,Faculty of Physics and Electronic Science,Hubei University,Wuhan,Hubei,430062,China;State Key Laboratory for Silicon Materials,Key Laboratory of Quantum Technology and Devices,Department of Physics,Zhejiang University,Hangzhou,310027,China;College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen,518060,China;International Center for Materials Nanoarchitectonics(WPI-MANA),National Institute for Materials Science(NIMS),1-1 Namiki,Ibaraki,305-0044,Japan;School of Chemical Engineering&Australian Institute for Bioengineering and Nanotechnology(AIBN),The University of Queensland,Brisbane,QLD,4072,Australia
Poly(thiourea triethylene glycol)as a multifunctional binder for enhanced performance in lithium-sulfur batteries
Luke Hencz;Hao Chen;Zhenzhen Wu;Xingxing Gu;Meng Li;Yuhui Tian;Su Chen;Cheng Yan;Abdulaziz S.R.Bati;Joseph G.Shapter;Milton Kiefel;Dong-Sheng Li;Shanqing Zhang-Centre for Clean Environment and Energy,Griffith University Gold Coast Campus,Southport,QLD,4222,Australia;Chongqing Key Laboratory of Catalysis and New Environmental Materials,College of Environment and Resources,Chongqing Technology and Business University,Chongqing,400067,China;School of Mechanical,Medical and Process Engineering,Queensland University of Technology(QUT),Brisbane,QLD,4000,Australia;Australian Institute for Bioengineering and Nanotechnology(AIBN),The University of Queensland,St.Lucia,Brisbane,QLD,4072,Australia;Institute for Glycomics,Gold Coast Campus,Griffith University,Southport,QLD,4222,Australia;College of Materials and Chemical Engineering,China Three Gorges University,No.8,Daxue Road,Yichang,443002,China
Nitrogen-doped porous carbon nanofoams with enhanced electrochemical kinetics for superior sodium-ion capacitor
K.Ramachandran;Gokila Subburam;Xian-Hu Liu;Ming-Gang Huang;Chun Xu;Dickon H.L.Ng;Ying-Xue Cui;Guo-Chun Li;Jing-Xia Qiu;Chuan Wang;Jia-Biao Lian-Institute for Energy Research,Jiangsu University,Zhenjiang 212013,China;Key Laboratory of Materials Processing and Mold(Zhengzhou University),Ministry of Education,Zhengzhou University,Zhengzhou 450002,China;Key Laboratory of Fine Chemical Application Technology of Luzhou,Luzhou 646099,China;Department of Physics,The Chinese University of Hong Kong,Hong Kong 999077,China;Jiangsu National Synergetic Innovation Center for Advanced Materials,School of Chemistry and Molecular Engineering,Institute of Advanced Synthesis,Nanjing Technology University,Nanjing 211800,China
Chlorine-rich lithium argyrodites enables superior performances for solid-state Li-Se batteries at wide temperature range
Jin-Yan Lin;Shuai Chen;Jia-Yang Li;Dian Yu;Xiang-Ling Xu;Chuang Yu;Shao-Qing Chen;Xue-Fei Miao;Lin-Feng Peng;Chao-Chao Wei;Chong-Xuan Liu;Shi-Jie Cheng;Jia Xie-State Key Laboratory of Advanced Electromagnetic Engineering and Technology,School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;School of Materials,Huazhong University of Science and Technology,Wuhan 430074,China;Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China;Key Laboratory of Advanced Metallic and Intermetallic Materials Technology,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China
Boosting the potassium-ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere
Mengting Cai;Hehe Zhang;Yinggan Zhang;Bensheng Xiao;Lei Wang;Miao Li;Ying Wu;Baisheng Sa;Honggang Liao;Li Zhang;Shuangqiang Chen;Dong-Liang Peng;Ming-Sheng Wang;Qiaobao Zhang-Department of Materials Science and Engineering,College of Materials,Xiamen University,Xiamen 361005,China;Department of Chemical Engineering,School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,China;School of Materials and Energy,Lanzhou University,Lanzhou 730000,China;Key Laboratory of Eco-materials Advanced Technology,College of Materials Science and Engineering,Fuzhou University,Fuzhou 350108,China;College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China;Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(IKKEM),Xiamen 361005,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。