首站-论文投稿智能助手
典型文献
Unraveling transition-metal-mediated stability of spinel oxide via in situ neutron scattering
文献摘要:
The energy materials performance is intrinsically determined by structures from the average lattice structure to the atom arrangement,valence,and distribution of the containing transition metal(TM)ele-ments.Understanding the mechanism of the structure transition and atom rearrangement via synthesis or processing is key to expediting the exploration of excellent energy materials.In this work,in situ neu-tron scattering is employed to reveal the real-time structure evolution,including the TM-O bonds,lattice,TM valence and the migration of the high-voltage spinel cathode LiNi0.5Mn1.5O4.The transition-metal-mediated spinel destabilization under the annealing at the oxygen-deficient atmosphere is pinpointed.The formation of Mn3+is correlated to the TM migration activation,TM disordered rearrangement in the spinel,and the transition to a layered-rocksalt phase.The further TM interdiffusion and Mn2+reduc-tion are also revealed with multi-stage thermodynamics and kinetics.The mechanisms of phase transi-tion and atom migrations as functions of temperature,time and atmosphere present important guidance on the synthesis in various-valence element containing oxides.
文献关键词:
作者姓名:
Yan Chen;Ke An
作者机构:
Neutron Scattering Division,Oak Ridge National Laboratory,Oak Ridge,TN 37831,USA
文献出处:
引用格式:
[1]Yan Chen;Ke An-.Unraveling transition-metal-mediated stability of spinel oxide via in situ neutron scattering)[J].能源化学,2022(05):60-70
A类:
expediting,Mn3+is,rocksalt,Mn2+reduc
B类:
Unraveling,transition,metal,mediated,stability,spinel,via,situ,neutron,scattering,energy,materials,performance,intrinsically,determined,by,structures,from,average,lattice,atom,valence,distribution,containing,TM,ments,Understanding,rearrangement,synthesis,processing,key,exploration,excellent,In,this,work,employed,real,evolution,including,bonds,high,voltage,cathode,LiNi0,5Mn1,5O4,destabilization,under,annealing,oxygen,deficient,atmosphere,pinpointed,formation,correlated,activation,disordered,layered,phase,further,interdiffusion,are,also,revealed,multi,stage,thermodynamics,kinetics,mechanisms,migrations,functions,temperature,present,important,guidance,various,element,oxides
AB值:
0.497264
相似文献
Enhanced reversibility of the magnetoelastic transition in(Mn,Fe)2(P,Si)alloys via minimizing the transition-induced elastic strain energy
Xuefei Miao;Yong Gong;Fengqi Zhang;Yurong You;Luana Caron;Fengjiao Qian;Wenhui Guo;Yujing Zhang;Yuanyuan Gong;Feng Xu;Niels van Dijk;Ekkes Brück-MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;Fundamental Aspects of Materials and Energy,Department of Radiation Science and Technology,Delft University of Technology,Mekelweg 15,Delft,JB 2629,Netherlands;Department of Physics,Bielefeld University,Bielefeld 33501,Germany;Helmholtz-Zentrum Berlin für Materialien und Energie,Berlin 12489,Germany;College of Physics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
In situ neutron diffraction unravels deformation mechanisms of a strong and ductile FeCrNi medium entropy alloy
L.Tang;F.Q.Jiang;J.S.Wróbel;B.Liu;S.Kabra;R.X.Duan;J.H.Luan;Z.B.Jiao;M.M.Attallah;D.Nguyen-Manh;B.Cai-School of Metallurgy and Materials,University of Birmingham,B15 2TT,United Kingdom;Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China;Faculty of Materials Science and Engineering,Warsaw University of Technology,ul.Wo?oska 141,Warsaw 02-507,Poland;State Key Laboratory for Powder Metallurgy,Central South University,Changsha 410083,China;Rutherford Appleton Laboratory,ISIS Facility,Didcot OX11 0QX,United Kingdom;Department of Materials Science and Engineering,City University of Hong Kong,Kowloon,Hong Kong,China;Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hung Hom,Hong Kong,China;CCFE,United Kingdom Atomic Energy Authority,Abingdon,Oxfordshire OX14 3DB,United Kingdom
Structure design enables stable anionic and cationic redox chemistry in a T2-type Li-excess layered oxide cathode
Xin Cao;Haifeng Li;Yu Qiao;Min Jia;Hirokazu Kitaura;Jianan Zhang;Ping He;Jordi Cabana;Haoshen Zhou-Energy Technology Research Institute,National Institute of Advanced Industrial Science and Technology (AIST),Tsukuba 305-g568,Japan;Graduate School of System and Information Engineering,University of Tsukuba,Tsukuba 305-8573,Japan;Department of Chemistry,University of Illinois at Chicago,Chicago,IL 60607,USA;College of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China;Center of Energy Storage Materials & Technology,College of Engineering and Applied Sciences,Jiangsu Key Laboratory of Artificial Functional Materials,National Laboratory of Solid State Microstructures,and Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。