首站-论文投稿智能助手
典型文献
基于优势竞争网络的转运机器人路径规划
文献摘要:
该文提出了一种基于深度强化学习的优势竞争网络(advantage dueling double deep Q-network,AD3QN)算法作为500 m 口径球面射电 望远镜(five-hundred-meter aperture spherical radio telescope,FAST)促动器 自动化维护车间转运机器人的路径规划方法.通过预先学习竞争网络中的状态价值层,使状态价值参数根据环境状态进行初始化,减少了首次接触目标点所需要的步数;通过改进竞争网络中的贪婪搜索算法,使环境探索与利用的转变更为合理;通过改进动作选择策略,使机器人路径规划不易陷入局部极小值,进一步加快了算法收敛的速度.AD3QN算法具有动态规划能力强、实时性好、柔性高、鲁棒性强和准确率高等优点.对促动器自动化维护车间进行建模并测试网络改进前后的路径规划能力,仿真结果表明:采用AD3QN算法在首次找到目标点用时方面比一般竞争网络快176%.该研究有望提高FAST促动器的维护效率,进而减少对FAST观测时间的挤占.
文献关键词:
FAST促动器;深度强化学习;竞争网络;路径规划
作者姓名:
何启嘉;王启明;李佳璇;王正佳;王通
作者机构:
中国科学院国家天文台,北京100101;中国科学院大学,北京100049;中国科学院FAST重点实验室,北京100101;中国科学院沈阳自动化研究所,沈阳110016;中国科学院机器人与智能制造创新研究院,沈阳110169;南京工业大学计算机科学与技术学院,南京211816
引用格式:
[1]何启嘉;王启明;李佳璇;王正佳;王通-.基于优势竞争网络的转运机器人路径规划)[J].清华大学学报(自然科学版),2022(11):1751-1757
A类:
AD3QN
B类:
竞争网络,转运机器人,机器人路径规划,深度强化学习,advantage,dueling,double,deep,network,口径,球面,望远镜,five,hundred,meter,aperture,spherical,radio,telescope,FAST,促动器,护车,路径规划方法,先学,值参,数根,初始化,触目,标点,步数,贪婪搜索,搜索算法,探索与利用,进动,动作选择策略,局部极小值,动态规划,进前,时方,维护效率,观测时间,挤占
AB值:
0.419143
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。