典型文献
预测雷诺应力输运模型的机器学习算法评估
文献摘要:
近年来,机器学习(ML)算法在湍流建模中的应用显示出了希望,但它们的应用仅限于基于涡流黏度的封闭方法.本文讨论了应用机器学习与高保真湍流数据的基本原理,以开发雷诺应力传输建模水平的模型.基于这些理论,本文比较了不同的机器学习算法,以确定它们在雷诺应力输运方程中建模不同输运过程的有效性和鲁棒性.这些数据驱动的算法包括随机森林、梯度增强树和神经网络.采用直接数值模拟(DNS)数据作为ML模型的训练和测试,利用贝叶斯优化方法确定了ML算法的最优超参数.在雷诺应力输运方程的建模和预测中,评估了上述算法的有效性.观察到三种算法都以可接受的精度水平预测湍流参数.再将这些模型应用在不同于训练的流动情况的压力应变相关性的预测,以评估其鲁棒性和通用性.这探讨了基于ML的数据驱动湍流模型可以克服传统湍流模型的建模局限性,并且ML模型用大量不同类型的流数据训练,可以对具有相似流物理的未知流以合理的精度预测流场.除此之外,本文通过评估不同输入特征的重要性来验证最终的ML模型.
文献关键词:
中图分类号:
作者姓名:
Jyoti Prakash Panda;Hari Vijayan Warrior
作者机构:
文献出处:
引用格式:
[1]Jyoti Prakash Panda;Hari Vijayan Warrior-.预测雷诺应力输运模型的机器学习算法评估)[J].力学学报(英文版),2022(04):78-90
A类:
湍流建模
B类:
雷诺应力,输运模型,机器学习算法,ML,仅限于,涡流,高保真,流数据,直接数值模拟,DNS,贝叶斯优化,优超,超参数,湍流参数,模型应用,变相,通用性,湍流模型,数据训练,精度预测,测流,除此之外,输入特征
AB值:
0.293712
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。