首站-论文投稿智能助手
典型文献
Tunable non-Hermiticity through reservoir engineering
文献摘要:
We experimentally demonstrate tunable non-Hermitian coupling in an atomic-vapor cell where atomic coher-ences in different optical channels are dissipatively coupled through atomic motion.Introducing a far-detuned light wall in the reservoir between the optical channels,we decorate the inter-channel coupling term so that it can be switched from dissipative to coherent.The tunable non-Hermiticity is then confirmed through measurements of the inter-channel light transport where the light-wall-induced phase shift is directly probed.Based on the tunable non-Hermiticity,we further discuss an exemplary scheme in which our setup can serve as a building block for the experimental study of exotic non-Hermitian criticality.
文献关键词:
作者姓名:
XIN MENG;ZHIWEI HU;XINGDA LU;WANXIA CAO;XICHANG ZHANG;HAOWEI LI;YING HU;WEI YI;YANHONG XIAO
作者机构:
Department of Physics,State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures(Ministry of Education),Fudan University,Shanghai 200433,China;CAS Key Laboratory of Quantum Information,University of Science and Technology of China,Hefei 230026,China;State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Laser Spectroscopy,Shanxi University,Taiyuan 030006,China;Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China;CAS Center For Excellence in Quantum Information and Quantum Physics,Hefei 230026,China
引用格式:
[1]XIN MENG;ZHIWEI HU;XINGDA LU;WANXIA CAO;XICHANG ZHANG;HAOWEI LI;YING HU;WEI YI;YANHONG XIAO-.Tunable non-Hermiticity through reservoir engineering)[J].光子学研究(英文),2022(09):2091-2098
A类:
dissipatively
B类:
Tunable,Hermiticity,through,reservoir,engineering,We,experimentally,demonstrate,tunable,Hermitian,coupling,atomic,vapor,cell,where,ences,different,optical,channels,are,coupled,motion,Introducing,far,detuned,light,wall,between,decorate,inter,term,so,that,can,switched,from,coherent,then,confirmed,measurements,transport,induced,phase,shift,directly,probed,Based,further,discuss,exemplary,scheme,which,our,setup,serve,building,block,study,exotic,criticality
AB值:
0.573194
相似文献
A versatile interferometric technique for probing the thermophysical properties of complex fluids
Gopal Verma;Gyanendra Yadav;Chaudry Sajed Saraj;Longnan Li;Nenad Miljkovic;Jean Pierre Delville;Wei Li-GPL Photonics Lab,State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,130033 Changchun,China;School of Physical Sciences,University of Liverpool,Liverpool L69 3BX,UK;Materials Research Laboratory,University of Illinois,Urbana,IL,USA;Department of Mechanical Science and Engineering,University of Illinois,Urbana,IL,USA;Department of Electrical and Computer Engineering,University of Illinois,Urbana,IL,USA;International Institute for Carbon Neutral Energy Research(WPI-12CNER),Kyushu University,744 Motooka,Nishi-ku,Fukuoka 819-0395,Japan;University of Bordeaux,CNRS,LOMA,UMR 5798,F-33405 Talence,France
Light-induced tumor theranostics based on chemical-exfoliated borophene
Zhongjian Xie;Yanhong Duo;Taojian Fan;Yao Zhu;Shuai Feng;Chuanbo Li;Honglian Guo;Yanqi Ge;Shakeel Ahmed;Weichun Huang;Huiling Liu;Ling Qi;Rui Guo;Defa Li;Paras N.Prasad;Han Zhang-Institute of Pediatrics,Shenzhen Children's Hospital,Shenzhen,Guangdong,China;Shenzhen Engineering Laboratory of phosphorene and Optoelectronics;International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education,Shenzhen Institute of Translational Medicine,Department of Otolaryngology,Shenzhen Second People's Hospital,the First Affiliated Hospital,Institute of Microscale Optoelectronics,Shenzhen University,518060 Shenzhen,China;Department of Microbiology,Tumor and Cell Biology(MTC),Karolinska Institute,Stockholm,Sweden;Shenzhen Medical Ultrasound Engineering Center,Department of Ultrasonography,Shenzhen People's Hospital,Second Clinical Medical College of Jinan University,First Clinical Medical College of Southern University of Science and Technology,518020 Shenzhen,China;Optoelectronics Research Center,School of Science,Minzu University of China,100081 Beijing,PR China;Nantong Key Lab of Intelligent and New Energy Materials,College of Chemistry and Chemical Engineering,Nantong University,226019 Nantong,Jiangsu,China;Key Laboratory of Biomaterials of Guangdong Higher Education Institutes,Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development,Department of Biomedical Engineering,Jinan University,510632 Guangzhou,China;Department of Core Medical Laboratory,the Sixth Affiliated Hospital of Guangzhou Medical University,Qingyuan People's Hospital,Qingyuan,Guang Dong Province,China;Department of Laboratory Medicine,Shenzhen Children's Hospital,Shenzhen,Guangdong,China;Institute for Lasers,Photonics,and Biophotonics and Department of Chemistry,University at Buffalo,State University of New York,Buffalo,NY,USA
Terahertz structured light:nonparaxial Airy imaging using silicon diffractive optics
Rusnè lva?kevi?iūtè-Povilauskienè;Paulius Kizevi?ius;Ernestas Nacius;Domas Jokubauskis;K?stutis lkamas;Alvydas Lisauskas;Natalia Alexeeva;leva Matulaitienè;Vytautas Jukna;Sergej Orlov;Linas Minkevi?ius;Gintaras Valu?is-Department of Optoelectronics,Center for Physical Sciences and Technology,Sauletekio av.3,Vilnius 10257,Lithuania;Department of Fundamental Research,Center for Physical Sciences and Technology,Saulètekio av.3,Vilnius 10257,Lithuania;Institute of Applied Electrodynamics&Telecommunications,Vilnius University,Saulètekio av.3,Vilnius 10257,Lithuania;CENTERA Labs.,Institute of High Pressure Physics PAS,ul.Sokolowska 29/37,Warsaw 01-142,Poland;Department of Organic Chemistry,Center for Physical Sciences and Technology,Saulètekio av.3,Vilnius 10257,Lithuania;Institute of Photonics and Nanotechnology,Department of Physics,Vilnius University,Saulètekio av.3,Vilnius 10257,Lithuania
Chirality-switchable acoustic vortex emission via non-Hermitian selective excitation at an exceptional point
Tuo Liu;Shuowei An;Zhongming Gu;Shanjun Liang;He Gao;Guancong Ma;Jie Zhu-Key Laboratory of Noise and Vibration Research,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hong Kong,China;The Hong Kong Polytechnic University Shenzhen Research Institute,Shenzhen 518057,China;Institute of Acoustics,School of Physics Science and Engineering,Tongji University,Shanghai 200092,China;Division of Science,Engineering and Health Studies,College of Professional and Continuing Education,The Hong Kong Polytechnic University,Hong Kong,China;Department of Physics,Hong Kong Baptist University,Hong Kong,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。