首站-论文投稿智能助手
典型文献
煤热解过程中噻吩类硫化物迁移转化机理研究进展
文献摘要:
噻吩类硫化物是煤中有机硫的重要赋存形式,在煤热解过程中,噻吩类硫化物会迁移至热解产物中进而影响产物品质或引发环境污染,因此明晰煤热解过程中噻吩类硫化物的迁移转化特性与机理对煤炭高效清洁利用以及国家双碳目标实现具有重要意义.归纳了噻吩类硫化物在煤中的赋存和热解过程中的析出特性,噻吩类硫化物含量随着煤阶升高而增多,热解过程中的噻吩类硫化物主要来源于煤中大分子结构热裂解释放,部分来源于无机硫和硫醚、硫醇等有机硫的转化.概述了噻吩类硫化物热解特性与反应机理的相关实验和计算研究结果,噻吩类硫化物的分解主要由C-S键均裂和氢迁移引发,裂解产生多种含硫自由基中间体进而生成H2S,SO2,COS和CS2等含硫气体,其他含硫基团相互聚合或与芳香环结合形成多环含硫芳烃迁移到焦油和焦炭中.总结了多种热解条件对噻吩类硫化物热解的影响,热解温度升高能促进噻吩类硫化物分解,升温速率越慢噻吩类硫化物的脱除越彻底;H2、水蒸气以及CO2气氛都对噻吩类硫化物的分解有促进作用,其中H2和水蒸气能够通过提供氢自由基攻击噻吩环上的硫原子,或与不饱和的C=C键发生加成反应促进噻吩类硫化物热解;CO2的氧化性会降低C-S键断裂难度,促进噻吩类硫化物形成更多的SCO2,CHO和R-0自由基,从而促进气相含硫产物的生成;煤中的高岭土能促进噻吩类硫化物的释放,钙质矿物则会与其反应向CaS转化;不同性质的添加剂能作为反应物或催化剂影响噻吩类硫化物的热解反应.基于噻吩类硫化物的迁移机理,对煤热解过程的调控应从两方面入手,一方面定向促进氢迁移反应和C-S键断裂以促进噻吩类硫化物分解;另一方面提供热解环境缺少的氢自由基和含氧基团抑制多环含硫芳烃化合物生成.未来还需在噻吩类硫化物向液相和固相迁移的反应机理、反应器型等多因素耦合作用下的噻吩类硫化物热解调控机制等方面开展深入研究.
文献关键词:
迁移转化;噻吩类硫化物;热解;煤炭;赋存
作者姓名:
刘吉;杨双维;赵微;胡斌;夏源谷;马善为;陆强
作者机构:
华北电力大学新能源发电国家工程研究中心,北京 102206;华北电力大学苏州研究中心,江苏苏州 215000
文献出处:
引用格式:
[1]刘吉;杨双维;赵微;胡斌;夏源谷;马善为;陆强-.煤热解过程中噻吩类硫化物迁移转化机理研究进展)[J].煤炭学报,2022(11):3886-3896
A类:
氢迁移反应
B类:
煤热解,热解过程,噻吩类硫化物,迁移转化,转化机理,有机硫,赋存形式,移至,热解产物,高效清洁,清洁利用,双碳目标,目标实现,析出特性,煤阶,大分子,分子结构,热裂解,分来,无机硫,硫醚,硫醇,热解特性,反应机理,均裂,含硫自由基,中间体,H2S,SO2,COS,CS2,硫基,芳香环,焦油,焦炭,热解条件,热解温度,升温速率,越慢,脱除,水蒸气,供氢,氢自由基,不饱和,加成反应,氧化性,SCO2,CHO,进气,高岭土,钙质,应向,CaS,反应物,催化剂影响,热解反应,供热,解环,含氧基团,芳烃化合物,反应器,器型,多因素耦合作用,解调,调控机制
AB值:
0.278879
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。