首站-论文投稿智能助手
典型文献
Artificial intelligence and remote sensing for spatial prediction of daily air temperature:case study of Souss watershed of Morocco
文献摘要:
Air temperature (Tair) is a fundamental variable in climate research and climate impact management. Conventional field observations do not accurately capture its spatial distribution due to the sparse and uneven distribution of weather stations, especially in remote areas where the local variability is high. To circumvent this problem, in this study, remote sensing and weather station data were used to estimate Tair in the Souss watershed in Morocco. Two statistical methods, including linear regression and partial least squares (PLS), and four machine learning algorithms, namely k-nearest neighbors, random forest (RF), extreme gradient boost, and Cubist, were used for modeling and predicting Tair and its performance were evaluated using random subsets and cross-validation. Moderate resolution imaging spectroradiometer predictors, including Terra band 32 emissivity, Terra nighttime land surface temperature, Terra local time of night observation, Aqua band 31 emissivity, Aqua daytime land surface tempera-ture, and Aqua nighttime land surface temperature (ALSTN), and auxiliary inputs, including sky-view, elevation, slope, and hillshade, were used as inputs for modeling. The results showed that the Cubist and RF were the most accurate models (RMSE=2.09°C and 2.13°C, R2=0.91 and 0.90, respectively), while PLS had the lowest predictive power (RMSE=2.71°C;R2=0.83). The overall performance of the models for estimating Tair in the study area was generally satisfac-tory, with RMSE limited to less than 3°C for all models. Nevertheless, the station data reliability was still an issue, with only four of the seven stations marked by complete meteorological data.
文献关键词:
作者姓名:
Modeste Meliho;Abdellatif Khattabi;Driss Zejli;Collins Ashianga Orlando;Caleb E.Dansou
作者机构:
Ecole Nationale des Sciences Appliquées Kénitra-Laboratoire Ingénierie des Systèmes Avancés(ISA),UniversitéIbn Tofail,Kenitra,Morocco;Ecole Nationale Forestière d'Ingénieurs,Salé,Morocco;Salé,Morocco;Sciences de données,école des sciences del'information(ESI),Rabat,Morocco
引用格式:
[1]Modeste Meliho;Abdellatif Khattabi;Driss Zejli;Collins Ashianga Orlando;Caleb E.Dansou-.Artificial intelligence and remote sensing for spatial prediction of daily air temperature:case study of Souss watershed of Morocco)[J].地球空间信息科学学报(英文版),2022(02):244-258
A类:
Souss,ALSTN,hillshade
B类:
Artificial,intelligence,remote,sensing,spatial,prediction,daily,temperature,case,study,watershed,Morocco,Air,Tair,fundamental,variable,climate,research,impact,management,Conventional,field,observations,not,accurately,capture,its,distribution,due,sparse,uneven,weather,stations,especially,areas,where,local,variability,high,To,circumvent,this,problem,data,were,used,estimate,Two,statistical,methods,including,linear,regression,partial,least,squares,PLS,four,machine,learning,algorithms,namely,nearest,neighbors,random,forest,RF,extreme,gradient,boost,Cubist,modeling,predicting,performance,evaluated,using,subsets,cross,validation,Moderate,resolution,imaging,spectroradiometer,predictors,Terra,band,emissivity,nighttime,land,surface,Aqua,daytime,auxiliary,inputs,sky,view,elevation,slope,results,showed,that,most,models,RMSE,respectively,while,lowest,predictive,power,overall,estimating,was,generally,satisfac,tory,limited,than,Nevertheless,reliability,still,issue,only,seven,marked,by,complete,meteorological
AB值:
0.546827
相似文献
Detection of oil spill based on CBF-CNN using HY-1C CZI multispectral images
Kai Du;Yi Ma;Zongchen Jiang;Xiaoqing Lu;Junfang Yang-College of Geodesy and Geomatics,Shandong University of Science and Technology,Qingdao 266590,China;First Institute of Oceanology,Ministry of Natural Resources,Qingdao 266061,China;Technology Innovation Center for Ocean Telemetry,Ministry of Natural Resources,Qingdao 266061,China;National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology,Xi'an 710072,China;School of Electronics and Information Engineering,Harbin Institute of Technology,Harbin 150001,China;National Satellite Ocean Application Service,Beijing 100081,China;College of Oceanography and Space Informatics,China University of Petroleum(East China),Qingdao 266580, China
Tropical tree community composition and diversity variation along a volcanic elevation gradient
Rubén MARTíNEZ-CAMILO;Manuel MARTíNEZ-MELéNDEZ;Nayely MARTíNEZ-MELéNDEZ;Derio Antonio JIMéNEZ-LóPEZ;Mauricio JOSé-RíOS-Unidad Villa Corzo,Facultad de Ingeniería,Universidad de Ciencias y Artes de Chiapas,30520 Villa Corzo,Chiapas,Mexico;Instituto de Ciencias Biológicas,Universidad de Ciencias y Artes de Chiapas,29039 Tuxtla Gutiérrez,Chiapas,Mexico;Eizia A.C.,29045 Tuxtla Gutiérrez,Chiapas,Mexico;Departamento de Conservación de la Biodiversidad,El Colegio de la Frontera Sur,29290 San Cristóbal de las Casas,Chiapas,Mexico;Orquidiario y Jardín Botánico de Comitán,Secretaría de Medio Ambiente e Historia Natural,30106 Comitán de Domínguez,Chiapas,Mexico;Instituto de Investigación en Gestión de Riesgos y Cambio Climático,Universidad de Ciencias y Artes de Chiapas,29039 Tuxtla Gutiérrez,Chiapas,Mexico
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。