典型文献
                一种分阶段的恶意域名检测算法
            文献摘要:
                    针对现有基于域名字符特征的恶意域名检测方法在检测精度和范围等方面表现不佳的问题,提出一种分阶段的恶意域名检测算法.首先,利用域名黑名单和域名白名单技术实现待测域名的快速过滤与响应,并构造潜在待测域名集合;然后,构建双向长短时记忆神经网络(Bi-Directional Long Short Term Memory,BiLSTM)和卷积神经网络(Convolutional Neural Net-works,CNN)的混合模型BiLSTM-CNN,并使用Softmax实现潜在待测域名集合中合法域名与恶意域名的分类;最后,通过在Alexa、DGA Domain List和Malware Domain List等标准数据集上进行测试,并与当前主流恶意域名检测算法进行对比.实验结果表明,本文算法在保持检测精度较高的基础上,具有更广的检测范围.
                文献关键词:
                    域名白名单;域名黑名单;双向长短时记忆神经网络;卷积神经网络
                中图分类号:
                    
                作者姓名:
                    
                        王甜甜;刘雄飞
                    
                作者机构:
                    中国矿业大学银川学院信息工程学院,银川750000
                文献出处:
                    
                引用格式:
                    
                        [1]王甜甜;刘雄飞-.一种分阶段的恶意域名检测算法)[J].小型微型计算机系统,2022(10):2046-2050
                    
                A类:
                域名黑名单,域名白名单
                B类:
                    分阶段,恶意域名检测,检测算法,名字,字符,检测精度,白名单技术,快速过滤,双向长短时记忆神经网络,Directional,Long,Short,Term,Memory,BiLSTM,Convolutional,Neural,Net,works,混合模型,Softmax,法域,Alexa,DGA,Domain,List,Malware,标准数据集,检测范围
                AB值:
                    0.250854
                相似文献
                
            机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。