首站-论文投稿智能助手
典型文献
兼顾用户话语权的改进加权Slope-One协同过滤推荐
文献摘要:
针对协同过滤算法中数据稀疏性导致的推荐结果精确度不高的问题,本文提出一种改进的加权Slope-One算法填充评分矩阵.首先,利用用户的评论次数信息区分用户活跃度,然后,在加权Slope-one算法考虑不同项目之间评分用户数量差异影响的基础上,进一步考虑不同活跃度的用户话语权差异对评分预测的影响,提出了兼顾用户话语权的加权Slope-One算法,最后,基于Movie-Lens和Amazon-Clothes两个不同商品品类的数据集,对4种协同过滤算法进行了不同填充比例和不同最优近邻数情况下的仿真实验.仿真对比发现:在仿真实验确定的最优矩阵填充比例和最优近邻数的情况下,相比加权Slope-One协同过滤、原始协同过滤、基于奇异值分解的协同过滤等推荐算法,引入本文所提出的改进加权Slope-One的协同过滤推荐算法,在数据稀疏度不同的两个数据集上的MAE值都更低,说明本文算法能够有效降低数据稀疏性并达到了提高推荐精确度的目的.
文献关键词:
评分矩阵;数据稀疏性;Slope-One算法;协同过滤;用户话语权
作者姓名:
陈梅梅;董晨光;王淇;戴伟辉
作者机构:
东华大学旭日工商管理学院,上海200051;复旦大学 管理学院,上海200433
引用格式:
[1]陈梅梅;董晨光;王淇;戴伟辉-.兼顾用户话语权的改进加权Slope-One协同过滤推荐)[J].小型微型计算机系统,2022(09):1814-1819
A类:
B类:
用户话语权,Slope,One,协同过滤算法,数据稀疏性,评分矩阵,用用,分用,用户活跃度,one,法考,不同项目,用户数量,差异影响,评分预测,Movie,Lens,Amazon,Clothes,品类,填充比,近邻,仿真对比,矩阵填充,奇异值分解,协同过滤推荐算法,稀疏度,MAE
AB值:
0.267469
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。