首站-论文投稿智能助手
典型文献
Understanding the Coffee ring Effect on Self-discharge Behavior of Printed micro-Supercapacitors
文献摘要:
Printed micro-supercapacitor exhibits its flexibility in geometry design and integration,showing unprecedented potential in powering the internet of things and portable devices.However,the printing process brings undesired processing defects(e.g.,coffee ring effect),resulting in severe self-discharge of the printed micro-supercapacitors.The impact of such problems on device performance is poorly understood,limiting further development of micro-supercapacitors.Herein,by analyzing the self-discharge behavior of fully printed micro-supercapacitors,the severe self-discharge problem is accelerated by the ohmic leakage caused by the coffee ring effect on an ultrathin polymer electrolyte.Based on this understanding,the coffee ring effect was successfully eradicated by introducing graphene oxide in the polymer electrolyte,achieving a decline of 99%in the self-discharge rate.Moreover,the micro-supercapacitors with uniformly printed polymer electrolyte present 7.64 F cm-3 volumetric capacitance(14.37 mF cm-2 areal capacitance),exhibiting about 50%increase compared to the one without graphene oxide addition.This work provides a new insight to understand the relationship between processing defects and device performance,which will help improve the performance and promote the application of printed m icro-supercapacitors.
文献关键词:
作者姓名:
Jingzhi Hu;Zhaohua Xu;Kai Yuan;Chao Shen;Keyu Xie;Bingqing Wei
作者机构:
Research&Development Institute of Northwestern Polytechnical University in Shenzhen,Northwestern Polytechnical University,Shenzhen 518057,China;State Key Laboratory of Solidification Processing,Center for Nano Energy Materials,School of Materials Science and Engineering,Northwestern Polytechnical University,Xi'an 710072,China;Department of Mechanical Engineering,University of Delaware,Newark DE 19716,USA
引用格式:
[1]Jingzhi Hu;Zhaohua Xu;Kai Yuan;Chao Shen;Keyu Xie;Bingqing Wei-.Understanding the Coffee ring Effect on Self-discharge Behavior of Printed micro-Supercapacitors)[J].能源与环境材料(英文),2022(01):321-326
A类:
B类:
Understanding,Coffee,Effect,Self,discharge,Behavior,Printed,micro,Supercapacitors,exhibits,flexibility,geometry,design,integration,showing,unprecedented,potential,powering,internet,things,portable,devices,However,printing,brings,undesired,processing,defects,coffee,effect,resulting,severe,self,printed,supercapacitors,impact,such,problems,performance,poorly,understood,limiting,further,development,Herein,by,analyzing,behavior,accelerated,ohmic,leakage,caused,ultrathin,polymer,electrolyte,Based,this,understanding,was,successfully,eradicated,introducing,graphene,oxide,achieving,decline,Moreover,uniformly,present,volumetric,capacitance,mF,areal,exhibiting,about,increase,compared,one,without,addition,This,work,provides,new,insight,relationship,between,which,will,help,improve,promote,application
AB值:
0.558548
相似文献
Vertically Aligned Silicon Carbide Nanowires/Boron Nitride Cellulose Aerogel Networks Enhanced Thermal Conductivity and Electromagnetic Absorbing of Epoxy Composites
Duo Pan;Gui Yang;Hala M.Abo-Dief;Jingwen Dong;Fengmei Su;Chuntai Liu;Yifan Li;Ben Bin Xu;Vignesh Murugadoss;Nithesh Naik;Salah M.El-Bahy;Zeinhom M.El-Bahy;Minan Huang;Zhanhu Guo-Key Laboratory of Materials Processing and Mold(Zhengzhou University),Ministry of Education;Mechanical and Construction Engineering,Faculty of Engineering and Environment,Northumbria University,Newcastle upon Tyne NE1 8ST,UK;National Engineering Research Center for Advanced Polymer Processing Technology,Zhengzhou University,Zhengzhou 450002,People's Republic of China;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Integrated Composites Laboratory(ICL),Department of Chemical and Biomolecular Engineering,University of Tennessee,Knoxville,TN 37996,USA;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,People's Republic of China;Department of Mechanical and Manufacturing Engineering,Manipal Institute of Technology,Manipal Academy of Higher Education,Manipal,Karnataka 576104,India;Department of Chemistry,Turabah University College,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,USA
High-Transconductance,Highly Elastic,Durable and Recyclable All-Polymer Electrochemical Transistors with 3D Micro-Engineered Interfaces
Wenjin Wang;Zhaoxian Li;Mancheng Li;Lvye Fang;Fubin Chen;Songjia Han;Liuyuan Lan;Junxin Chen;Qize Chen;Hongshang Wang;Chuan Liu;Yabin Yang;Wan Yue;Zhuang Xie-School of Materials Science and Engineering,Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education,Sun Yat-Sen University,Guangzhou 510275,People's Republic of China;State Key Laboratory of Optoelectronic Materials and Technologies and Guangdong Province Key Laboratory of Display Material and Technology,School of Electronics and Information Technology,Sun Yat-Sen University,Guangzhou 510275,People's Republic of China
Elastic Buffering Layer on CuS Enabling High-Rate and Long-Life Sodium-Ion Storage
Yuanhua Xiao;Feng Yue;Ziqing Wen;Ya Shen;Dangcheng Su;Huazhang Guo;Xianhong Rui;Liming Zhou;Shaoming Fang;Yan Yu-Key Laboratory of Surface and Interface Science and Technology,Zhengzhou University of Light Industry,Zhengzhou 450002,People's Republic of China;Institute of Nanochemistry and Nanobiology,School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,People's Republic of China;Institute School of Materials and Energy,Guangdong University of Technology,Guangzhou 510006,People's Republic of China;Hefei National Research Center for Physical Sciences at the Microscale,Department of Materials Science and Engineering,National Synchrotron Radiation Laboratory,CAS Key Laboratory of Materials for Energy Conversion,University of Science and Technology of China.Hefei,Anhui 230026,People's Republic of China
3D-Printed Scaffolds Promote Angiogenesis by Recruiting Antigen-Specific T Cells
Cuidi Li;Zhenjiang Ma;Wentao Li;Tianyang Jie;Liping Zhong;Hongfang Chen;Wenhao Wang;Jinwu Wang;Wenguo Cui;Yongxiang Zhao-Department of Orthopaedics,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,Shanghai Institute of Traumatology and Orthopaedics,Ruijin Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai 200025,China;Department of Orthopedic Surgery,Shanghai Key Laboratory of Orthopedic Implants,Shanghai Ninth People's Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai 200011,China;National Center for International Research of Bio-targeting Theranostics,Guangxi Key Laboratory of Bio-targeting Theranostics,Collaborative Innovation Center for Targeting Tumor Theranostics,Guangxi Medical University,Nanning 530021,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。