首站-论文投稿智能助手
典型文献
Novel P2-type layered medium-entropy ceramics oxide as cathode material for sodium-ion batteries
文献摘要:
High-entropy oxides(HEOs)and medium-entropy oxides(MEOs)are new types of single-phase solid solution materials.MEOs have rarely been reported as positive electrode material for sodium-ion batteries(SIBs).In this study,we first proposed the concept of the application of MEOs in SIBs.P2-type 3-cation oxide Na2/3Ni1/3Mn1/3Fe1/3O2(NaNMF)and 4-cation oxide Na2/3Ni1/3Mn1/3Fe1/3-xAlxO2(NaNMFA)were prepared using the solid-state method,rather than the doping technology.In addition,the importance of the concept of entropy stabilization in material performance and battery cycling was demonstrated by testing 3-cation(NaNMF)and 4-cation(NaNMFA)oxides in the same system.Thus,NaNMFA can provide a reversible capacity of about 125.6 mAh·g1 in the voltage range of 2-4.2 V,and has enhanced cycle stability.The capacity and decay law of the MEO batteries indicate that the configurational entropy(1.28 R(NaNMFA)>1.10 R(NaNMF))of the cationic system,is the main factor affecting the structural and cycle stability of the electrode material.This work emphasizes that the rational design of MEOs with novel structures and different electrochemically active elements may be the strategy for exploring high-performance SIB cathode materials in next-generation energy storage devices.
文献关键词:
作者姓名:
Shengxue YAN;Shaohua LUO;Liu YANG;Jian FENG;Pengwei LI;Qing WANG;Yahui ZHANG;Xin LIU
作者机构:
School of Materials Science and Engineering,Northeastern University,Shenyang 110819,China;Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province,School of Resources and Materials,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China;School of Resources and Materials,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China;State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110819,China
引用格式:
[1]Shengxue YAN;Shaohua LUO;Liu YANG;Jian FENG;Pengwei LI;Qing WANG;Yahui ZHANG;Xin LIU-.Novel P2-type layered medium-entropy ceramics oxide as cathode material for sodium-ion batteries)[J].先进陶瓷(英文版),2022(01):158-171
A类:
HEOs,MEOs,NaNMF,xAlxO2,NaNMFA
B类:
Novel,P2,layered,medium,entropy,ceramics,cathode,sodium,batteries,High,oxides,new,types,single,phase,solid,solution,materials,have,rarely,been,reported,positive,electrode,SIBs,In,this,study,first,proposed,concept,application,Na2,3Ni1,3Mn1,3Fe1,3O2,were,prepared,using,state,method,rather,than,doping,technology,addition,importance,stabilization,performance,battery,cycling,was,demonstrated,by,testing,same,system,Thus,can,provide,reversible,capacity,about,mAh,g1,voltage,range,enhanced,cycle,stability,decay,law,indicate,that,configurational,cationic,main,affecting,structural,This,work,emphasizes,design,novel,structures,different,electrochemically,active,elements,may,strategy,exploring,high,next,generation,energy,storage,devices
AB值:
0.490068
相似文献
Structure design enables stable anionic and cationic redox chemistry in a T2-type Li-excess layered oxide cathode
Xin Cao;Haifeng Li;Yu Qiao;Min Jia;Hirokazu Kitaura;Jianan Zhang;Ping He;Jordi Cabana;Haoshen Zhou-Energy Technology Research Institute,National Institute of Advanced Industrial Science and Technology (AIST),Tsukuba 305-g568,Japan;Graduate School of System and Information Engineering,University of Tsukuba,Tsukuba 305-8573,Japan;Department of Chemistry,University of Illinois at Chicago,Chicago,IL 60607,USA;College of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China;Center of Energy Storage Materials & Technology,College of Engineering and Applied Sciences,Jiangsu Key Laboratory of Artificial Functional Materials,National Laboratory of Solid State Microstructures,and Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China
Monoclinic Cu3(OH)2V2O7·2H2O nanobelts/reduced graphene oxide:A novel high-capacity and long-life composite for potassium-ion battery anodes
Liming Ling;Xiwen Wang;Yu Li;Chenxiao Lin;Dong Xie;Min Zhang;Yan Zhang;Jinjia Wei;Huajie Xu;Faliang Cheng;Chuan Wu;Shiguo Zhang-Guangdong Engineering and Technology Research Center for Advanced Nanomaterials,School of Environment and Civil Engineering,Dongguan University of Technology,Dongguan 523808,Guangdong,China;College of Materials Science and Engineering,Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy,Hunan University,Changsha 410082,Hunan,China;School of Chemical Engineering and Technology,Xi'an Jiaotong University,Xi'an 710049,Shaanxi,China;Beijing Key Laboratory of Environmental Science and Engineering,School of Materials Science and Engineering,Beijing Institute of Technology,Beijing 100081,China;Key Laboratory of Materials Processing and Mold,Ministry of Education,Zhengzhou University,Zhengzhou 450002,Henan,China
Tailoring interphase structure to enable high-rate,durable sodium-ion battery cathode
Na Li;Shaofei Wang;Enyue Zhao;Wen Yin;Zhigang Zhang;Kang Wu;Juping Xu;Yoshihiro Kuroiwa;Zhongbo Hu;Fangwei Wang;Jinkui Zhao;Xiaoling Xiao-College of Materials Science and Opto-electronic Technology,Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China;Spallation Neutron Source Science Center,Dongguan 523803,Guangdong,China;Songshan Lake Materials Laboratory,Dongguan 523808,Guangdong,China;Department of Physical Science,Hiroshima University,Higashihiroshima,Hiroshima 739-8526,Japan;Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China
Revisiting the capacity-fading mechanism of P2-type sodium layered oxide cathode materials during high-voltage cycling
Meidan Jiang;Guannan Qian;Xiao-Zhen Liao;Zhouhong Ren;Qingyu Dong;Dechao Meng;Guijia Cui;Siqi Yuan;Sang-Jun Lee;Tian Qin;Xi Liu;Yanbin Shen;Yu-Shi He;Liwei Chen;Yijin Liu;Linsen Li;Zi-Feng Ma-Department of Chemical Engineering,Shanghai Electrochemical Energy Device Research Center(SEED),School of Chemistry and Chemical Engineering,Frontiers Science Center for Transformative Molecules,Shanghai Jiao Tong University,Shanghai 200240,China;Stanford Synchrotron Radiation Lightsource,SLAC National Accelerator Laboratory,Menlo Park,CA 94025,United States;In-Situ Center for Physical Sciences,School of Chemistry and Chemical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;Suzhou Institute of Nanotech and Nanobionics(SINANO),Chinese Academy of Sciences,Suzhou 215123,Jiangsu,China;Shanghai Jiao Tong University Sichuan Research Institute,Chengdu 610213,Sichuan,China
High entropy fluorides as conversion cathodes with tailorable electrochemical performance
Yanyan Cui;Parvathy Anitha Sukkurji;Kai Wang;Raheleh Azmi;Alexandra M.Nunn;Horst Hahn;Ben Breitung;Yin-Ying Ting;Piotr M.Kowalski;Payam Kaghazchi;Qingsong Wang;Simon Schweidler;Miriam Botros-Institute of Nanotechnology,Karlsruhe Institute of Technology(KIT),Hermann-von-Helmholtz-Platz 1,76344 Eggenstein-Leopoldshafen,Germany;Institute for Applied Materials-Energy Storage Systems,Karlsruhe Institute of Technology(KIT),Hermann-von-Helmholtz-Platz 1,76344 Eggenstein-Leopoldshafen,Germany;Faculty of Science,University of Waterloo,Waterloo,ON N2L 3G1,Canada;KIT-TUD-Joint Research Laboratory Nanomaterials,Technical University Darmstadt,Darmstadt 64287,Germany;Theory and Computation of Energy Materials(IEK-13),Institute of Energy and Climate Research,Forschungszentrum Jülich GmbH,52425 Jülich,Germany;Materials Synthesis and Processing(IEK-1),Institute of Energy and Climate Research,Forschungszentrum Jülich GmbH,52425 Jülich,Germany
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。