首站-论文投稿智能助手
典型文献
Investigation of role of cartilage surface polymer brush border in lubrication of biological joints
文献摘要:
Although experimental evidence has suggested that the polymer brush border (PBB) on the cartilage surface is important in regulating fluid permeability in the contact gap, the current theoretical understanding of joint lubrication is still limited. To address this research gap, a multiscale cartilage contact model that includes PBB, in particular its effect on the fluid permeability of the contact gap, is developed in this study. Microscale modeling is employed to estimate the permeability of the contact gap. This permeability is classified into two categories: For a gap size > 1 μm, the flow resistance is assumed to be dominated by the cartilage roughness; for gap size < 1 μm, flow resistance is assumed to be dominated by the surface polymers extending beyond the collagen network of the articular cartilage. For gap sizes of less than 1 μm, the gap permeability decreases exponentially with increasing aggrecan concentration, whereas the aggrecan concentration varies inversely with the gap size. Subsequently, the gap permeability is employed in a macroscale cartilage contact model, in which both the contact gap space and articular cartilage are modeled as two interacting poroelastic systems. The fluid exchange between these two media is achieved by imposing pressure and normal flux continuity boundary conditions. The model results suggest that PBB can substantially enhance cartilage lubrication by increasing the gap fluid load support (e.g., by 26 times after a 20-min indentation compared with the test model without a PBB). Additionally, the fluid flow resistance of PBB sustains the cartilage interstitial fluid pressure for a relatively long period, and hence reduces the vertical deformation of the tissue. Furthermore, it can be inferred that a reduction in the PBB thickness impairs cartilage lubrication ability.
文献关键词:
作者姓名:
JinJing LIAO;David W.SMITH;Saeed MIRAMINI;Bruce S.GARDINER;Lihai ZHANG
作者机构:
Department of Infrastructure Engineering,The University of Melbourne,Victoria 3010,Australia;Faculty of Engineering and Mathematical Sciences,The University of Western Australia,WA 6009,Australia;College of Science,Health,Engineering and Education,Murdoch University,WA 6150,Australia
文献出处:
引用格式:
[1]JinJing LIAO;David W.SMITH;Saeed MIRAMINI;Bruce S.GARDINER;Lihai ZHANG-.Investigation of role of cartilage surface polymer brush border in lubrication of biological joints)[J].摩擦(英文),2022(01):110-127
A类:
poroelastic
B类:
Investigation,role,cartilage,surface,brush,border,lubrication,biological,joints,Although,experimental,evidence,has,suggested,that,PBB,important,regulating,fluid,permeability,contact,gap,current,theoretical,understanding,still,limited,To,address,this,research,multiscale,includes,particular,its,effect,developed,study,Microscale,modeling,employed,estimate,This,classified,into,categories,For,flow,resistance,assumed,dominated,by,roughness,polymers,extending,beyond,collagen,network,sizes,less,than,decreases,exponentially,increasing,aggrecan,concentration,whereas,varies,inversely,Subsequently,macroscale,which,both,space,modeled,interacting,systems,exchange,between,these,media,achieved,imposing,pressure,normal,flux,continuity,boundary,conditions,results,substantially,enhance,load,support,times,after,indentation,compared,test,without,Additionally,sustains,interstitial,relatively,long,period,hence,reduces,vertical,deformation,tissue,Furthermore,inferred,reduction,thickness,impairs
AB值:
0.472737
相似文献
Dynamic analysis of heat extraction rate by supercritical carbon dioxide in fractured rock mass based on a thermal-hydraulic-mechanics coupled model
Chunguang Wang;Xingkai Shi;Wei Zhang;Derek Elsworth;Guanglei Cui;Shuqing Liu;Hongxu Wang;Weiqiang Song;Songtao Hu;Peng Zheng-College of Energy and Mining Engineering,Shandong University of Science and Technology,Qingdao 266590,China;New-energy Development Center of Sinopec Shengli Oilfield,Dongying 257001,China;Energy and Mineral Engineering and G3 Center,Penn State University,University Park,PA 16802,USA;Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines,Northeastern University,Shenyang 110004,China;Shandong Provincial Geo-Mineral Engineering Co.,Ltd,Jinan 250013,China;Qingdao Wofu New Energy Science and Technology Co.,Ltd,Qingdao 266010,China
Effectiveness of coal mine dust control:A new technique for preparation and efficacy of self-adaptive microcapsule suppressant
Bo Ren;Liang Yuan;Gang Zhou;Shuailong Li;Qunzhi Meng;Kai Wang;Bingyou Jiang;Guofeng Yu-School of Emergency Management and Safety Engineering,China University of Mining and Technology-Beijing,Beijing 100083,China;State Key Laboratory of Deep Coal Mining&Environment Protection,Huainan Mining Group Co.,LTD.,Huainan 232001,China;Key Laboratory of Industrial Dust Control and Occupational Health,Ministry of Education,Anhui University of Science and Technology,Huainan 232001,China;College of Safety and Environmental Engineering,Shandong University of Science and Technology,Qingdao 266590,China;Department of Civil and Environmental Engineering,University of Alberta,Edmonton T6G 2R3,Canada
Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant:From mechanisms to application
Xin CUI;Changhe LI;Wenfeng DING;Yun CHEN;Cong MAO;Xuefeng XU;Bo LIU;Dazhong WANG;Hao Nan LI;Yanbin ZHANG;Zafar SAID;Sujan DEBNATH;Muhammad JAMIL;Hafiz Muhammad ALI;Shubham SHARMA-School of Mechanical and Automotive Engineering,Qingdao University of Technology,Qingdao 266520,China;College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Chengdu Tool Research Institute Co.,Ltd.Chengdu 610500,China;College of Automotive and Mechanical Engineering,Changsha University of Science and Technology,Changsha 410114,China;Key Laboratory of Special Purpose Equipment and Advanced Processing Technology,Ministry of Education&Zhejiang Province,Zhejiang University of Technology,Hangzhou 310032,China;Sichuan Future Aerospace Industry LLC.,Shifang 618400,China;School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;School of Aerospace,University of Nottingham Ningbo China,Ningbo 315100,China;College of Engineering,University of Sharjah,Sharjah 27272,United Arab Emirates;Mechanical Engineering Department,Curtin University,Miri 98009,Malaysia;Mechanical Engineering Department,King Fahd University of Petroleum and Minerals,Dhahran 31261,Saudi Arabia;Department of Mechanical Engineering and Advanced Materials Science,Council of Scientific and Industrial Research(CSIR)-Central Leather Research Institute(CLRI),Regional Center for Extension and Development,Jalandhar 144021,India
Electrochemical behavior of open-cellular structured Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid:the significance of pore characteristics
Xin Gai;Rui Liu;Yun Bai;Shujun Li;Yang Yang;Shenru Wang;Jianguo Zhang;Wentao Hou;Yulin Hao;Xing Zhang;Rui Yang;R.D.K.Misra-Shi-changxu Innovation Center for Advanced Materials,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China;School of Materials Science and Engineering,University of Science and Technology of China,Shenyang 110016,China;Department of Orthopedic Surgery,Peking Union Medical College Hospital(PUMCH),Peking Union Medical College and Chinese Academy of Medical Sciences,Beijing 100730,China;Department of Metallurgical,Materials,and Biomedical Engineering,The University of Texas at El Paso,500W.University Avenue,El Paso,TX 79968,United States
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。