首站-论文投稿智能助手
典型文献
时敏目标的类型与瞄准点识别算法
文献摘要:
深度卷积神经网络模型在很多计算机视觉应用中取得了非常出色的结果,如何利用深度学习技术完成复杂战场环境下的辅助制导和瞄准点定位,是我军赢得现代信息化战争的关键.针对该问题,本文提出了一种时敏目标的类型与瞄准点识别算法,用于改善对时敏目标检测的质量,并为后续模块提供作战军事资源各个部件的打击价值.该算法对YOLOv3主干网络进行重新设计,使用深度可分离卷积神经网络的残差块对输入图像进行特征提取,然后将得到的特征图送入注意力模型,为含有目标部件等重要语义信息的特征图赋予相应的权值,最后将经注意力机制模型处理后的特征图送入回归网络进行时敏目标的类型与瞄准点识别.在COCO与VOC数据集上的实验结果表明,本文算法使用的特征提取网络与注意力模型有效提升了深度卷积神经网络对常见目标的检测精度(mAP);在所建立的战场军事资源模型数据集上的实验结果表明,本文算法可实现对非合作时敏目标的瞄准点精准识别.
文献关键词:
时敏目标;目标检测;瞄准点识别;深度学习;注意力模型;YOLOv3;神经网络
作者姓名:
吴晗;张志龙;李楚为;李航宇
作者机构:
国防科技大学 ATR重点实验室,长沙 410073
文献出处:
引用格式:
[1]吴晗;张志龙;李楚为;李航宇-.时敏目标的类型与瞄准点识别算法)[J].航空兵器,2022(02):24-29
A类:
瞄准点识别
B类:
时敏目标,识别算法,深度卷积神经网络,卷积神经网络模型,计算机视觉应用,出色,深度学习技术,复杂战场环境,制导,点定,我军,现代信息化,信息化战争,目标检测,作战,战军,军事资源,YOLOv3,主干网络,重新设计,使用深度,深度可分离卷积神经网络,残差块,特征图,送入,注意力模型,语义信息,权值,经注,注意力机制模型,模型处理,COCO,VOC,特征提取网络,检测精度,mAP,资源模型,模型数据,精准识别
AB值:
0.296519
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。