首站-论文投稿智能助手
典型文献
Spatial patterns of residents'daily activity space and its influencing factors based on the CatBoost model:A case study of Nanjing,China
文献摘要:
The complexity and fragmentation of people's activity space are challenging to planners.However,the relevant studies are mostly concerned on the relationship between the social attributes and the activity space of residents in a single or several communities,or the spatiotemporal laws of activity space on a macro scale.The research on the spatial char-acteristics of residents'activity space still needs to be strengthened.The present study ana-lyses the spatial patterns of residents'activity space based on mobile phone signaling data to fill the gap of previous studies that assessed residents'activity space across small geographic areas.First,according to the spatial scope and direction of an activity space and residents'activity coverage rate,spatial patterns can be divided into three types:compact,extended,and directional extension patterns.The CatBoost method is then used to statistically analyze the influencing variables of spatial patterns,and the order of importance of the following influ-encing factors is determined:the built environment is more influential than social and eco-nomic situations.This study aims to strengthen the understanding of residents'activity space at the spatial level and provide a basis for the optimization of communities with different spatial patterns.
文献关键词:
作者姓名:
Jiemin Zheng;Mingxing Hu;Chenghui Wang;Shuting Wang;Bing Han;Hui Wang
作者机构:
School of Architecture,Southeast University,Nanjing,210096,China;College of Landscape Architecture,Nanjing Forestry University,Nanjing,210037,China
引用格式:
[1]Jiemin Zheng;Mingxing Hu;Chenghui Wang;Shuting Wang;Bing Han;Hui Wang-.Spatial patterns of residents'daily activity space and its influencing factors based on the CatBoost model:A case study of Nanjing,China)[J].建筑学研究前沿(英文版),2022(06):1193-1204
A类:
lyses,encing
B类:
Spatial,patterns,residents,daily,activity,space,its,influencing,factors,CatBoost,model,case,study,Nanjing,China,complexity,fragmentation,people,challenging,planners,However,relevant,studies,mostly,concerned,relationship,between,social,attributes,single,several,communities,spatiotemporal,laws,macro,scale,research,spatial,char,acteristics,still,needs,strengthened,present,mobile,phone,signaling,data,fill,gap,previous,that,assessed,across,small,geographic,areas,First,according,scope,coverage,rate,can,divided,into,three,types,compact,extended,directional,extension,method,used,statistically,analyze,variables,order,importance,following,determined,built,environment,more,influential,than,eco,nomic,situations,This,aims,understanding,level,provide,basis,optimization,different
AB值:
0.526112
相似文献
From statistics to grids: A two-level model to simulate crop pattern dynamics
XIA Tian;WU Wen-bin;ZHOU Qing-bo;Peter H.VERBURG;YANG Peng;HU Qiong;YE Li-ming;ZHU Xiao-juan-Key Laboratory for Geographical Process Analysis&Simulation,Hubei Province/College of Urban&Environmental Science,Central China Normal University,Wuhan 430079,P.R.China;Key Laboratory of Agricultural Remote Sensing,Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences,Beijing 100081,P.R.China;Agricultural Information Institute,Chinese Academy of Agricultural Sciences,Beijing 100081,P.R.China;Institute for Environmental Studies,VU University Amsterdam,Amsterdam 1085,The Netherlands;Department of Geology,Ghent University,Ghent 9000,Belgium;Commercial and Economic Law School,China University of Political Science and Law,Beijing 100088,P.R.China
Massive feature extraction for explaining and foretelling hydroclimatic time series forecastability at the global scale
Georgia Papacharalampous;Hristos Tyralis;Ilias G.Pechlivanidis;Salvatore Grimaldi;Elena Volpi-Department of Engineering,Roma Tre University,Via V.Volterra 62,00146 Rome,Italy;Department of Water Resources and Environmental Engineering,School of Civil Engineering,National Technical University of Athens,Heroon Polytechneiou 5,15780 Zographou,Greece;Hellenic Air Force General Staff,Hellenic Air Force,Mesogion Avenue 227-231,15561 Cholargos,Greece;Swedish Meteorological and Hydrological Institute,60176 Norrk?ping,Sweden;Department for Innovation in Biological,Agro-food and Forest Systems,University of Tuscia,Viterbo,Italy;Department of Mechanical and Aerospace Engineering,Tandon School of Engineering,New York University,Brooklyn,NY,10003,United States
Tropical tree community composition and diversity variation along a volcanic elevation gradient
Rubén MARTíNEZ-CAMILO;Manuel MARTíNEZ-MELéNDEZ;Nayely MARTíNEZ-MELéNDEZ;Derio Antonio JIMéNEZ-LóPEZ;Mauricio JOSé-RíOS-Unidad Villa Corzo,Facultad de Ingeniería,Universidad de Ciencias y Artes de Chiapas,30520 Villa Corzo,Chiapas,Mexico;Instituto de Ciencias Biológicas,Universidad de Ciencias y Artes de Chiapas,29039 Tuxtla Gutiérrez,Chiapas,Mexico;Eizia A.C.,29045 Tuxtla Gutiérrez,Chiapas,Mexico;Departamento de Conservación de la Biodiversidad,El Colegio de la Frontera Sur,29290 San Cristóbal de las Casas,Chiapas,Mexico;Orquidiario y Jardín Botánico de Comitán,Secretaría de Medio Ambiente e Historia Natural,30106 Comitán de Domínguez,Chiapas,Mexico;Instituto de Investigación en Gestión de Riesgos y Cambio Climático,Universidad de Ciencias y Artes de Chiapas,29039 Tuxtla Gutiérrez,Chiapas,Mexico
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。