典型文献
A spatial regression modeling framework for examining relationships between the built environment and pedestrian crash occurrences at macroscopic level:A study in a developing country context
文献摘要:
Researchers have been trying to identify the contributory factors behind pedestrian crash occurrences through studies at both microscopic and macroscopic levels. However, built environment-related factors have primarily been examined in developed countries, resulting in a limited understanding of the phenomenon in the context of developing countries. Methodologically, these studies mostly used global regression models, which failed to incorporate spatial autocorrelation and spatial heterogeneity. Additionally, some of these studies applied spatial regression models randomly without following a comprehensive logical framework behind their selections. Our study aimed to develop a comprehensive spatial regression modeling framework to examine the relationships between pedestrian crash occurrences and the built environment at the macroscopic level in a megacity, Dhaka, the capital of a developing country:Bangladesh. Using secondary pedestrian crash data, the study applied one global non-spatial model, two global spatial regression models, and two local spatial regression models following a comprehensive spatial regression modeling framework. The factors which significantly contributed to pedestrian crash occurrences in Dhaka were employed person density, mixed and recreational land use density, primary road density, major intersection density, and share of non-motorized modes. Except for the last factor, all the other ones were positively related to pedestrian crash density. Among the five models used in this study, the multiscale geographically weighted regression (MGWR) performed the best as it calibrated each local relationship with a distant spatial scale parameter. The findings and recommendations presented in this study would be useful for reducing pedestrian crashes and choosing the appropriate modeling technique for crash analysis.
文献关键词:
中图分类号:
作者姓名:
Niaz Mahmud Zafri;Asif Khan
作者机构:
Department of Urban and Regional Planning, Bangladesh University of Engineering and Technology (BUET)-1000, Bangladesh
文献出处:
引用格式:
[1]Niaz Mahmud Zafri;Asif Khan-.A spatial regression modeling framework for examining relationships between the built environment and pedestrian crash occurrences at macroscopic level:A study in a developing country context)[J].地理学与可持续性(英文),2022(04):312-324
A类:
contributory
B类:
spatial,regression,modeling,framework,examining,relationships,between,built,environment,pedestrian,occurrences,macroscopic,study,developing,country,context,Researchers,have,been,trying,identify,factors,behind,through,studies,both,microscopic,levels,However,related,primarily,examined,developed,countries,resulting,limited,understanding,phenomenon,Methodologically,these,mostly,used,global,models,which,failed,incorporate,autocorrelation,heterogeneity,Additionally,some,applied,randomly,without,following,comprehensive,their,selections,Our,aimed,megacity,Dhaka,capital,Bangladesh,Using,secondary,data,two,local,significantly,contributed,were,employed,person,density,mixed,recreational,land,primary,road,major,intersection,share,motorized,modes,Except,last,other,ones,positively,Among,five,this,multiscale,geographically,weighted,MGWR,performed,best,calibrated,each,distant,parameter,findings,recommendations,presented,would,useful,reducing,crashes,choosing,appropriate,technique,analysis
AB值:
0.484829
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。