首站-论文投稿智能助手
典型文献
Lp Boundedness of Fourier Integral Operators in the Class S0,0
文献摘要:
We first prove the L2-boundedness of a Fourier integral operator where it's symbol a ∈S01/2,1/2(Rn×Rn)and the phase function S is non-degenerate,satisfies certain conditions and may not be positively homogeneous in ξ-variables.Then we use the above property,Paley's inequality,covering lemma of Calderon and Zygmund etc.,and obtain the Lp-boundedness of Fourier integral operators if(1)the symbol a ∈ Λm0k and Supp a = E×Rn,with E a compact set of Rn(m0 =-|1/p-1/2|n,1<p≤2,k>n/2;2<p<∞,k>n/p),(2)the symbol a ∈ Λm00,k,k'(m0 =-|1/p-1/2|n,1<p≤2,k>n/2,k'>n/p;2<p<∞,k>n/p,k'>n/2)with the phase function S(x,ξ)= xξ+h(x,ξ),x,ξ ∈ Rn non-degenerate,satisfying certain conditions and ?ξh ∈ S01,0(Rn×Rn),or(3)the symbol a ∈ Λm00,k,k',the requirements for m0,k,k'are the same as in(2),and ?ξh is not in S01,0(Rn×Rn)but the phase function S is non-degenerate,satisfies certain conditions and is positively homogeneous in ξ-variables.
文献关键词:
作者姓名:
Ing-Lung HWANG
作者机构:
Department of Mathematics,"National Chung Cheng University of Taiwan",Chiayi County 621003,China
引用格式:
[1]Ing-Lung HWANG-.Lp Boundedness of Fourier Integral Operators in the Class S0,0)[J].数学学报(英文版),2022(09):1551-1596
A类:
Calderon,m0k,m00
B类:
Lp,Boundedness,Fourier,Integral,Operators,Class,We,first,prove,L2,boundedness,integral,where,symbol,S01,Rn,phase,function,degenerate,satisfies,certain,conditions,may,not,be,positively,homogeneous,variables,Then,we,use,above,property,Paley,inequality,covering,lemma,Zygmund,etc,obtain,operators,if,Supp,compact,set,+h,satisfying,requirements,are,same,but
AB值:
0.433433
相似文献
Evidence for Magnetic Fractional Excitations in a Kitaev Quantum-Spin-Liquid Candidate α-RuCl3
Kejing Ran;Jinghui Wang;Song Bao;Zhengwei Cai;Yanyan Shangguan;Zhen Ma;Wei Wang;Zhao-Yang Dong;P.(C)ermák;A.Schneidewind;Siqin Meng;Zhilun Lu;Shun-Li Yu;Jian-Xin Li;Jinsheng Wen-School of Physical Science and Technology,and ShanghaiTech Laboratory for Topological Physics,ShanghaiTech University,Shanghai 200031,China;National Laboratory of Solid State Microstructures and Department of Physics,Nanjing University,Nanjing 210093,China;Institute for Advanced Materials,Hubei Normal University,Huangshi 435002,China;School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;Department of Applied Physics,Nanjing University of Science and Technology,Nanjing 210094,China;Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ),Forschungszentrum Jülich GmbH,Lichtenbergstr.1,85748 Garching,Germany;Charles University,Faculty of Mathematics and Physics,Department of Condensed Matter Physics,Ke Karlovu 5,12116,Praha,Czech Republic;Helmholtz-Zentrum Berlin für Materialien und Energie GmbH,Hahn-Meitner-Platz 1D-14109,Berlin,Germany;China Institute of Atomic Energy (CIAE),Beijing 102413,China;The Henry Royce Institute and Department of Materials Science and Engineering,The University of Sheffield,Sir Robert Hadfield Building,Sheffield,S13JD,United Kingdom;Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China
Phase Diagram of the BCS-Hubbard Model in a Magnetic Field
Dong-Hong Xu;Yi-Cong Yu;Xing-Jie Han;Xi Chen;Kang Wang;Ming-Pu Qin;Hai-Jun Liao;Tao Xiang-Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;Wuhan Institute of Physics and Mathematics,IAPMST,Chinese Academy of Sciences,Wuhan 430071,China;School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China;Key Laboratory of Artificial Structures and Quantum Control,School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China;Songshan Lake Materials Laboratory,Dongguan 523808,China;Beijing Academy of Quantum Information Sciences,Beijing 100193,China
Chirality-switchable acoustic vortex emission via non-Hermitian selective excitation at an exceptional point
Tuo Liu;Shuowei An;Zhongming Gu;Shanjun Liang;He Gao;Guancong Ma;Jie Zhu-Key Laboratory of Noise and Vibration Research,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hong Kong,China;The Hong Kong Polytechnic University Shenzhen Research Institute,Shenzhen 518057,China;Institute of Acoustics,School of Physics Science and Engineering,Tongji University,Shanghai 200092,China;Division of Science,Engineering and Health Studies,College of Professional and Continuing Education,The Hong Kong Polytechnic University,Hong Kong,China;Department of Physics,Hong Kong Baptist University,Hong Kong,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。