典型文献
Lp Boundedness of Fourier Integral Operators in the Class S0,0
文献摘要:
We first prove the L2-boundedness of a Fourier integral operator where it's symbol a ∈S01/2,1/2(Rn×Rn)and the phase function S is non-degenerate,satisfies certain conditions and may not be positively homogeneous in ξ-variables.Then we use the above property,Paley's inequality,covering lemma of Calderon and Zygmund etc.,and obtain the Lp-boundedness of Fourier integral operators if(1)the symbol a ∈ Λm0k and Supp a = E×Rn,with E a compact set of Rn(m0 =-|1/p-1/2|n,1<p≤2,k>n/2;2<p<∞,k>n/p),(2)the symbol a ∈ Λm00,k,k'(m0 =-|1/p-1/2|n,1<p≤2,k>n/2,k'>n/p;2<p<∞,k>n/p,k'>n/2)with the phase function S(x,ξ)= xξ+h(x,ξ),x,ξ ∈ Rn non-degenerate,satisfying certain conditions and ?ξh ∈ S01,0(Rn×Rn),or(3)the symbol a ∈ Λm00,k,k',the requirements for m0,k,k'are the same as in(2),and ?ξh is not in S01,0(Rn×Rn)but the phase function S is non-degenerate,satisfies certain conditions and is positively homogeneous in ξ-variables.
文献关键词:
中图分类号:
作者姓名:
Ing-Lung HWANG
作者机构:
Department of Mathematics,"National Chung Cheng University of Taiwan",Chiayi County 621003,China
文献出处:
引用格式:
[1]Ing-Lung HWANG-.Lp Boundedness of Fourier Integral Operators in the Class S0,0)[J].数学学报(英文版),2022(09):1551-1596
A类:
Calderon,m0k,m00
B类:
Lp,Boundedness,Fourier,Integral,Operators,Class,We,first,prove,L2,boundedness,integral,where,symbol,S01,Rn,phase,function,degenerate,satisfies,certain,conditions,may,not,be,positively,homogeneous,variables,Then,we,use,above,property,Paley,inequality,covering,lemma,Zygmund,etc,obtain,operators,if,Supp,compact,set,+h,satisfying,requirements,are,same,but
AB值:
0.433433
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。