首站-论文投稿智能助手
典型文献
Polymerization-Amplified Photoacoustic Signal by Enhancing Near-Infrared Light-Harvesting Capacity and Thermal-to-Acoustic Conversion
文献摘要:
As a frontier imaging technique for biomedical applications,photoacoustic(PA)imaging has been developed rapidly.The development of new design strategies and excellent PA imaging reagents to boost PA conversion is eagerly desirable for high quality PA imaging but complicated to realize.Herein,we develop a new strategy in which PA imaging reagents with better properties can be easily optimized by polymerization.A series of new PA imaging reagents were designed and synthesized.The polymerization strategy can effectively promote the PA signal by specifically increasing the thermal-to-acoustic conversion efficiency.As these materials shared the same building units,the optimized effectiveness of polymerization strategy in terms of near-infrared light-harvesting capacity and thermal-to-acoustic conversion efficiency are discussed,rationally.The polymers with intense intramolecular motion exhibit an amplified PA signal by elevating thermal-to-acoustic conversion and its higher light-harvesting capability at redshifted region.The simultaneously strong PA signal and photothermal conversion efficiency of p-TTmB NPs enable precise PA imaging and effective photothermal therapy.This work highlights a simple and available design guideline of polymerization for amplifying the PA effect and optimizing existing materials.
文献关键词:
作者姓名:
He-Qi Gao;Jing-Tian Zhang;Xin-Wen Qi;Di Jiao;Yu-Ning Hong;Ke Shan;Xiang-Long Kong;Dan Ding
作者机构:
Key Laboratory of Bioactive Materials,Ministry of Education,and College of Life Sciences,Nankai University,Tianjin 300071,China;Center for AIE Research,Shenzhen Key Laboratory of Polymer Science and Technology,Guangdong Research Center for Interfacial Engineering of Functional Materials,College of Materials Science and Engineering,College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,China;Department of Chemistry and Physics,La Trobe Institute for Molecular Science,La Trobe University,Melbourne Victoria 3086,Australia;Shandong Artificial intelligence Institute and Shandong Computer Science Center,Qilu University of Technology,Jinan 250353,China
引用格式:
[1]He-Qi Gao;Jing-Tian Zhang;Xin-Wen Qi;Di Jiao;Yu-Ning Hong;Ke Shan;Xiang-Long Kong;Dan Ding-.Polymerization-Amplified Photoacoustic Signal by Enhancing Near-Infrared Light-Harvesting Capacity and Thermal-to-Acoustic Conversion)[J].高分子科学(英文版),2022(09):1090-1100
A类:
TTmB
B类:
Polymerization,Amplified,Photoacoustic,Signal,by,Enhancing,Near,Infrared,Light,Harvesting,Capacity,Thermal,Acoustic,Conversion,frontier,imaging,technique,biomedical,applications,photoacoustic,PA,has,been,developed,rapidly,development,new,strategies,excellent,reagents,boost,conversion,eagerly,desirable,quality,but,complicated,realize,Herein,strategy,which,better,properties,can,easily,optimized,polymerization,series,were,designed,synthesized,effectively,promote,signal,specifically,increasing,efficiency,these,materials,shared,same,building,units,effectiveness,terms,near,infrared,harvesting,capacity,discussed,rationally,polymers,intense,intramolecular,motion,exhibit,amplified,elevating,higher,capability,redshifted,region,simultaneously,strong,photothermal,NPs,enable,precise,therapy,This,work,highlights,simple,available,guideline,amplifying,optimizing,existing
AB值:
0.58646
相似文献
Effects of Flexible Conjugation-Break Spacers of Non-Conjugated Polymer Acceptors on Photovoltaic and Mechanical Properties of All-Polymer Solar Cells
Qiaonan Chen;Yung Hee Han;Leandro R.Franco;Cleber F.N.Marchiori;Zewdneh Genene;C.Moyses Araujo;Jin-Woo Lee;Tan Ngoc-Lan Phan;Jingnan Wu;Donghong Yu;Dong Jun Kim;Taek-Soo Kim;Lintao Hou;Bumjoon J.Kim;Ergang Wang-Siyuan Laboratory,Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials,Department of Physics,Jinan University,Guangzhou 510632,People's Republic of China;Department of Chemistry and Chemical Engineering,Chalmers University of Technology,SE-412 96,G?teborg,Sweden;Department of Chemical and Biomolecular Engineering,Korea Advanced Institute of Science and Technology(KAIST),Daejeon 34141,Republic of Korea;Department of Engineering and Physics,Karlstad University,65188 Karlstad,Sweden;Materials Theory Division,Department of Physics and Astronomy,Uppsala University,75120 Uppsala,Sweden;Department of Chemistry and Bioscience,Aalborg University,9220 Aalborg,Denmark;Sino-Danish Center for Education and Research,8000 Aarhus,Denmark;Department of Mechanical Engineering,Korea Advanced Institute of Science and Technology(KAIST),Daejeon 34141,Republic of Korea;School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,People's Republic of China
Electron-Deficient Zn-N6 Configuration Enabling Polymeric Carbon Nitride for Visible-Light Photocatalytic Overall Water Splitting
Daming Zhao;Yiqing Wang;Chung-Li Dong;Fanqi Meng;Yu-Cheng Huang;Qinghua Zhang;Lin Gu;Lan Liu;Shaohua Shen-International Research Center for Renewable Energy,State Key Laboratory of Multiphase Flow in Power Engineering,Xi'an Jiaotong University,Xi'an 710049,People's Republic of China;State Key Laboratory of Rare Earth Resource Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,People's Republic of China;Department of Physics,Tamkang University,New Taipei City 25137,Taiwan,People's Republic of China;Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,People's Republic of China
Functional Hyperbranched Polythioamides Synthesized from Catalyst-free Multicomponent Polymerization of Elemental Sulfur
Shangrun Liu;Fengting Li;Wenxia Cao;Rongrong Hu;Ben Zhong Tang-State Key Laboratory of Luminescent Materials and Devices,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates,South China University of Technology,Guangzhou,Guangdong 510640,China;Shenzhen Institute of Molecular Aggregate Science and Engineering,School of Science and Engineering,The Chinese University of Hong Kong,Shenzhen City,Guangdong 518172,China;AIE Institute,Guangzhou,Guangdong 510530,China;Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction,The Hong Kong University of Science&Technology,Clear Water Bay,Kowloon,Hong Kong,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。