FAILED
首站-论文投稿智能助手
典型文献
An antibiotic composite electrode for improving the sensitivity of electrochemically active biofilm biosensor
文献摘要:
Extensive research has been carried out for improved sensitivity of electroactive biofilm-based sensor(EAB-sensor),which is recognized as a useful tool in water quality early-warning.Antibiotic that is employed widely to treat infection has been proved feasible in this study to regulate the EAB and to increase the EAB-biosensor's sensitivity.A novel composite electrode was prepared using azithromycin(AZM)and graphite powder(GP),namely AZM@GP electrode,and was employed as the anode in EAB-biosensor.Different dosages of AZM,i.e.,2 mg,4 mg,and 8 mg,referred to as 0.25%,0.5%and 1%AZM@GP were under examination.Results showed that EAB-biosensor was greatly benefited from appropriate dosage of AZM(0.5%AZM@GP)with reduced start-up time period,comparatively higher voltage output,more readable electrical signal and increased inhibition rate(30%-65%higher than control sensor with GP electrode)when exposing to toxic formaldehyde.This may be attributed to the fact that AZM inhibited the growth of non-E AM without much influence on the physiologic or metabolism activities of EAM under proper dosage.Further investigation of the biofilm morphology and microbial community analysis suggested that the biofilm formation was optimized with reduced thickness and enriched Geobacter with 0.5%AZM@GP dosage.This novel electrode is easily fabricated and equipped,and therefore would be a promising way to facilitate the practical application of EAB-sensors.
文献关键词:
作者姓名:
Shuyi Wang;Xiang Qi;Yong Jiang;Panpan Liu;Wen Hao;Jinbin Han;Peng Liang
作者机构:
State Key Joint Laboratory of Environment Simulation and Pollution Control,School of Environment,Tsinghua University,Beijing 100084,China;Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation,College of Resources and Environment,Fujian Agriculture and Forestry University,Fuzhou 350002,China;School of Ecology and Environment,Zhengzhou University,Zhengzhou 450001,China
引用格式:
[1]Shuyi Wang;Xiang Qi;Yong Jiang;Panpan Liu;Wen Hao;Jinbin Han;Peng Liang-.An antibiotic composite electrode for improving the sensitivity of electrochemically active biofilm biosensor)[J].环境科学与工程前沿,2022(08):1-10
A类:
B类:
antibiotic,composite,electrode,improving,sensitivity,electrochemically,biofilm,biosensor,Extensive,research,has,been,carried,improved,electroactive,EAB,which,recognized,useful,tool,water,quality,early,warning,Antibiotic,that,employed,widely,treat,infection,feasible,this,study,regulate,novel,was,prepared,using,azithromycin,AZM,graphite,powder,GP,namely,anode,Different,dosages,referred,were,under,examination,Results,showed,greatly,benefited,from,appropriate,reduced,start,up,period,comparatively,higher,voltage,output,more,readable,electrical,signal,increased,inhibition,rate,than,control,when,exposing,toxic,formaldehyde,This,may,attributed,fact,inhibited,growth,without,much,influence,physiologic,metabolism,activities,EAM,proper,Further,investigation,morphology,microbial,community,analysis,suggested,formation,optimized,thickness,enriched,Geobacter,easily,fabricated,equipped,therefore,would,promising,way,facilitate,practical,application,sensors
AB值:
0.559268
相似文献
Energy-efficient removal of carbamazepine in solution by electrocoagulation-electrofenton using a novel P-rGO cathode
Zhihui Xiao;Tingyu Cui;Zhenbei Wang;Yan Dang;Meijie Zheng;Yixinfei Lin;Zilong Song;Yiping Wang;Chao Liu;Bingbing Xu;Amir Ikhlaq;Jolanta Kumirska;Ewa Maria Siedlecka;Fei Qi-Beijing Key Lab for Source Control Technology of Water Pollution,School of Environmental Science and Engineering,Beijing Forestry University,Beijing 100083,China;Jiangsu Key Lab of Industrial Pollution Control and Resource Reuse,School of Environmental Engineering,Xuzhou University of Technology,Xuzhou 221018,China;State Key Lab of Environmental Criteria and Risk Assessment,Chinese Research Academy of Environmental Sciences,Beijing 100012,China;Institute of Environment Engineering and Research,University of Engineering and Technology,GT Road,54890,Lahore,Punjab,Pakistan;Faculty of Chemistry,University of Gdansk,Wita Stwvosza 63,80-308 Gdansk,Poland
Highly stretchable,sensitive and wide linear responsive fabric-based strain sensors with a self-segregated carbon nanotube(CNT)/Polydimethylsiloxane(PDMS)coating
Libing Liu;Xuezhong Zhang;Dong Xiang;Yuanpeng Wu;Dan Sun;Jiabin Shen;Menghan Wang;Chuinxia Zhao;Hui Li;Zhenyu Li;Ping Wang;Yuntao Li-School of New Energy and Materials,Southwest Petroleum University,Chengdu,610500,China;The Center of Functional Materials for Working Fluids of Oil and Gas Field,Southwest Petroleum University,Chengdu,610500,China;School of Mechanical and Aerospace Engineering,Queen's University Belfast,Belfast,BT9 5AH,UK;State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University,Chengdu,610065,China;College of Materials Science and Engineering Chongqing University,Chongqing 400030,China
Monoclinic Cu3(OH)2V2O7·2H2O nanobelts/reduced graphene oxide:A novel high-capacity and long-life composite for potassium-ion battery anodes
Liming Ling;Xiwen Wang;Yu Li;Chenxiao Lin;Dong Xie;Min Zhang;Yan Zhang;Jinjia Wei;Huajie Xu;Faliang Cheng;Chuan Wu;Shiguo Zhang-Guangdong Engineering and Technology Research Center for Advanced Nanomaterials,School of Environment and Civil Engineering,Dongguan University of Technology,Dongguan 523808,Guangdong,China;College of Materials Science and Engineering,Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy,Hunan University,Changsha 410082,Hunan,China;School of Chemical Engineering and Technology,Xi'an Jiaotong University,Xi'an 710049,Shaanxi,China;Beijing Key Laboratory of Environmental Science and Engineering,School of Materials Science and Engineering,Beijing Institute of Technology,Beijing 100081,China;Key Laboratory of Materials Processing and Mold,Ministry of Education,Zhengzhou University,Zhengzhou 450002,Henan,China
Zeolitic imidazolate framework-67 derived Al-Co-S hierarchical sheets bridged by nitrogen-doped graphene:Incorporation of PANI derived carbon nanorods for solid-state asymmetric supercapacitors
Emad S.Goda;Bidhan Pandit;Sang Eun Hong;Bal Sydulu Singu;Seong K.Kim;Essam B.Moustafa;Kuk Ro Yoon-Organic Nanomaterials Lab,Department of Chemistry,Hannam University,Daejeon 34054,Republic of Korea;Gas Analysis and Fire Safety Laboratory,Chemistry Division,National Institute for Standards,136,Giza 12211,Egypt;Department of Materials Science and Engineering and Chemical Engineering,Universidad Carlos Ⅲ de Madrid,Avenida de La Universidad 30,28911 Leganés,Madrid,Spain;Department of Chemical and Biomolecular Engineering,Yonsei University,Seoul 03722,Republic of Korea;Department of Chemical Engineering,Hannam University,1646 Yuseongdae-ro,Yuseong-gu,Daejeon 34054,Republic of Korea;Mechanical Engineering Department,Faculty of Engineering,King Abdulaziz University,P.O.Box 80204,Jeddah 22254,Saudi Arabia
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。