典型文献
THS-GWNN:a deep learning framework for temporal network link prediction
文献摘要:
1 Introduction and main contributions
Link prediction for temporal networks aims to evaluate the likelihood of the future linkage among nodes,which has significant applications in social networks,biological net-works and traffic analysis[1],etc.Network embedding[2]is an important analytical tool for temporal network link predic-tion,which helps us better understand network evolution[3].
文献关键词:
中图分类号:
作者姓名:
Xian MO;Jun PANG;Zhiming LIU
作者机构:
College of Computer&Information Science,Southwest University,Chongqing 400715,China;Faculty of Science,Technology and Medicine&Interdisciplinary Centre for Security,Reliability and Trust,University of Luxembourg,Esch-sur-Alzette L-4364,Luxembourg
文献出处:
引用格式:
[1]Xian MO;Jun PANG;Zhiming LIU-.THS-GWNN:a deep learning framework for temporal network link prediction)[J].计算机科学前沿,2022(02):165-167
A类:
Link
B类:
THS,GWNN,deep,learning,framework,temporal,prediction,Introduction,main,contributions,networks,aims,evaluate,likelihood,future,linkage,among,nodes,which,has,significant,applications,social,biological,traffic,analysis,etc,Network,embedding,important,analytical,tool,helps,us,better,understand,evolution
AB值:
0.635839
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。