典型文献
Achieving efficient utilization of limonitic nickel laterite and CO2 emission reduction through multi-force field sintering process
文献摘要:
Strengthening limonitic nickel laterite sintering and reducing CO2 emission were performed by the application of multi-force fields including external thermodynamic and pressure fields.Sinter pot tests of limonitic nickel laterite were carried out,and the relevant industrial production was briefed.The chemistry and mineralogy of product sinter and the thermo-dynamic and kinetic conditions during sintering were analyzed to reveal the relevant mechanism.The results indicate that sintering performance of limonitic nickel laterite in the new sintering process with multi-force fields is significantly improved with tumble index and productivity increased by 24.11%and 18.56%,respectively,and solid fuel rate reduced by 23.21%,compared with those in traditional sintering process.In this case,greenhouse and pollutant gas emissions are greatly reduced,and metallurgical performances of product sinter are excellent.The industrial production has been successfully conducted,indicating a bright application prospect.Mechanism analysis shows that the great improvement of thermodynamic and kinetic conditions during sintering and the densification of loose sinter can be achieved via the application of multi-force fields.Sinter microstructure is transformed from large thin-wall pores to small thin-wall pores or medium thick-wall pores with the dramatic reduction of sinter porosity and more formation of silico-ferrite of calcium and alumina(SFCA).Meanwhile,the homogenization of mineral compositions is achieved,and much denser interlocking texture between hercynite and SFCA is formed.The application of multi-force fields contributes to the substantial improvement of sintering performance of limonitic nickel laterite and CO2 emission reduction.
文献关键词:
中图分类号:
作者姓名:
Yu-xiao Xue;De-qing Zhu;Zheng-qi Guo;Jian Pan;Yi-ge Wang;Qing-zhou Huang;Liao-ting Pan;Xue-zhong Huang
作者机构:
School of Minerals Processing and Bioengineering,Central South University,Changsha 410083,Hunan,China;Guangxi Beibu Gulf New Materials Co.,Ltd.,Beihai 536000,Guangxi,China
文献出处:
引用格式:
[1]Yu-xiao Xue;De-qing Zhu;Zheng-qi Guo;Jian Pan;Yi-ge Wang;Qing-zhou Huang;Liao-ting Pan;Xue-zhong Huang-.Achieving efficient utilization of limonitic nickel laterite and CO2 emission reduction through multi-force field sintering process)[J].钢铁研究学报(英文版),2022(11):1734-1747
A类:
limonitic,laterite,Sinter,briefed,tumble,hercynite
B类:
Achieving,efficient,utilization,nickel,reduction,through,multi,force,sintering,process,Strengthening,reducing,were,performed,by,application,fields,including,external,thermodynamic,pressure,pot,tests,carried,out,relevant,industrial,production,was,chemistry,mineralogy,kinetic,conditions,during,analyzed,reveal,mechanism,results,indicate,that,new,significantly,improved,productivity,increased,respectively,solid,fuel,rate,reduced,compared,those,traditional,In,this,case,greenhouse,pollutant,gas,emissions,greatly,metallurgical,performances,excellent,has,been,successfully,conducted,indicating,bright,prospect,Mechanism,analysis,shows,improvement,densification,loose,achieved,via,microstructure,transformed,from,large,thin,wall,pores,small,medium,thick,dramatic,porosity,more,formation,silico,ferrite,calcium,alumina,SFCA,Meanwhile,homogenization,compositions,much,denser,interlocking,texture,between,contributes,substantial
AB值:
0.449272
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。