首站-论文投稿智能助手
典型文献
Phase-matching-induced near-chirp-free solitons in normal-dispersion fiber lasers
文献摘要:
Direct generation of chirp-free solitons without external compression in normal-dispersion fiber lasers is a long-term challenge in ultrafast optics. We demonstrate near-chirp-free solitons with distinct spectral sidebands in normal- dispersion hybrid-structure fiber lasers containing a few meters of polarization-maintaining fiber. The bandwidth and duration of the typical mode-locked pulse are 0.74 nm and 1.95 ps, respectively, giving the time-bandwidth product of 0.41 and confirming the near-chirp-free property. Numerical results and theoretical analyses fully reproduce and interpret the experimental observations, and show that the fiber birefringence, normal-dispersion, and nonlinear effect follow a phase-matching principle, enabling the formation of the near-chirp-free soliton. Specifically, the phase- matching effect confines the spectrum broadened by self-phase modulation and the saturable absorption effect slims the pulse stretched by normal dispersion. Such pulse is termed as birefringence-managed soliton because its two orthogonal-polarized components propagate in an unsymmetrical"X"manner inside the polarization-maintaining fiber, partially compensating the group delay difference induced by the chromatic dispersion and resulting in the self-consistent evolution. The property and formation mechanism of birefringence-managed soliton fundamentally differ from other types of pulses in mode-locked fiber lasers, which will open new research branches in laser physics, soliton mathematics, and their related applications.
文献关键词:
作者姓名:
Dong Mao;Zhiwen He;Yusong Zhang;Yueqing Du;Chao Zeng;Ling Yun;Zhichao Luo;Tijian Li;Zhipei Sun;Jianlin Zhao
作者机构:
Key Laboratory of Light Field Manipulation and Information Acquisition,Ministry of Industry and Information Technology,School of Physical Science and Technology,Northwestern Polytechnical University,710129 Xi'an,China;College of Electronic and Optical Engineering&College of Microelectronics,Nanjing University of Posts and Telecommunications,210046 Nanjing,China;Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices&Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications,South China Normal University,510006 Guangzhou,China;Department of Electronics and Nanoengineering and QTF Centre of Excellence,Aalto University,Aalto,Finland
引用格式:
[1]Dong Mao;Zhiwen He;Yusong Zhang;Yueqing Du;Chao Zeng;Ling Yun;Zhichao Luo;Tijian Li;Zhipei Sun;Jianlin Zhao-.Phase-matching-induced near-chirp-free solitons in normal-dispersion fiber lasers)[J].光:科学与应用(英文版),2022(02):230-241
A类:
slims
B类:
Phase,matching,induced,chirp,free,solitons,normal,dispersion,fiber,lasers,Direct,generation,without,external,compression,long,challenge,ultrafast,optics,We,demonstrate,distinct,spectral,sidebands,hybrid,structure,containing,few,meters,polarization,maintaining,bandwidth,duration,typical,mode,locked,are,ps,respectively,giving,product,confirming,property,Numerical,results,theoretical,analyses,fully,reproduce,interpret,experimental,observations,show,that,birefringence,nonlinear,effect,follow,phase,principle,enabling,formation,Specifically,confines,spectrum,broadened,by,self,modulation,saturable,absorption,stretched,Such,termed,managed,because,its,two,orthogonal,polarized,components,propagate,unsymmetrical,manner,inside,partially,compensating,group,delay,difference,chromatic,resulting,consistent,evolution,mechanism,fundamentally,from,other,types,pulses,which,will,open,new,research,branches,physics,mathematics,their,related,applications
AB值:
0.561997
相似文献
Generation of single solitons tunable from 3 to 3.8 μm in cascaded Er3+-doped and Dy3+-doped fluoride fiber amplifiers
Linpeng Yu;Jinhui Liang;Shiting Huang;Jinzhang Wang;Jiachen Wang;Xing Luo;Peiguang Yan;Fanlong Dong;Xing Liu;Qitao Lue;Chunyu Guo;Shuangchen Ruan-Shenzhen Key Laboratory of Laser Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen Technology University, Shenzhen 518118, China;Han’s Laser Technology Industry Group Co., Ltd., Shenzhen 518057, China;e-mail: scruan@sztu.edu.cn
Generation of single solitons tunable from 3 to 3.8 um in cascaded Er3+-doped and Dy3+-doped fluoride fiber amplifiers
LINPENG YU;JINHUI LIANG;SHITING HUANG;JINZHANG WANG;JIACHEN WANG;XING LUO;PEIGUANG YAN;FANLONG DONG;XING LIU;QITAO LUE;CHUNYU GUO;SHUANGCHEN RUAN-Shenzhen Key Laboratory of Laser Engineering,Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,China;Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes,Shenzhen Technology University,Shenzhen 518118,China;Han's Laser Technology Industry Group Co.,Ltd.,Shenzhen 518057,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。