首站-论文投稿智能助手
典型文献
Multi-Traffic Targets Tracking Based on an Improved Structural Sparse Representation with Spatial-Temporal Constraint
文献摘要:
Vehicles or pedestrians tracking is an im-portant task in intelligent transportation system.In this paper,we propose an online multi-object tracking for in-telligent traffic platform that employs improved sparse representation and structural constraint.We first build the spatial-temporal constraint via the geometric rela-tions and appearance of tracked objects,then we con-struct a robust appearance model by incorporating the discriminative sparse representation with weight con-straint and local sparse appearance with occlusion analys-is.Finally,we complete data association by using maxim-um a posteriori in a Bayesian framework in the pursuit for the optimal detection estimation.Experimental res-ults in two challenging vehicle tracking benchmark data-sets show that the proposed method has a good tracking performance.
文献关键词:
作者姓名:
YANG Honghong;SHANG Junchao;LI Jingjing;ZHANG Yumei;WU Xiaojun
作者机构:
Key Laboratory of Modern Teaching Technology,Ministry of Education,Shaanxi Normal University,Xi'an 710062,China;School of Computer Science,Shaanxi Normal University,Xi'an 710062,China;School of Journalism and Communication,Shaanxi Normal University,Xi'an 710062,China
引用格式:
[1]YANG Honghong;SHANG Junchao;LI Jingjing;ZHANG Yumei;WU Xiaojun-.Multi-Traffic Targets Tracking Based on an Improved Structural Sparse Representation with Spatial-Temporal Constraint)[J].电子学报(英文),2022(02):266-276
A类:
telligent
B类:
Multi,Traffic,Targets,Tracking,Based,Improved,Structural,Sparse,Representation,Spatial,Temporal,Constraint,Vehicles,pedestrians,tracking,portant,task,intelligent,transportation,system,In,this,paper,online,multi,traffic,platform,that,employs,improved,sparse,representation,structural,constraint,We,first,build,spatial,temporal,via,geometric,rela,tions,appearance,tracked,objects,then,robust,model,by,incorporating,discriminative,weight,local,occlusion,analys,Finally,complete,data,association,using,maxim,um,posteriori,Bayesian,framework,pursuit,optimal,detection,estimation,Experimental,ults,two,challenging,vehicle,benchmark,sets,show,proposed,method,has,good,performance
AB值:
0.681046
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。