首站-论文投稿智能助手
典型文献
Structural optimization of filament wound composite pipes
文献摘要:
An optimization procedure is developed for obtaining optimal structural design of filament wound composite pipes with minimum cost utilized in pressurized water and waste-water pipelines.First,the short-term and long-term design constraints dictated by international standards are identified.Then,proper computational tools are developed for predicting the structural properties of the composite pipes based on the design architecture of layers.The developed computational tools are validated by relying on experimental analysis.Then,an integrated design-optimization process is developed to minimize the price as the main objective,taking into account design requirements and manufacturing limitations as the constraints and treating lay-up sequence,fiber volume fraction,winding angle,and the number of total layers as design variables.The developed method is implemented in various case studies,and the results are presented and discussed.
文献关键词:
作者姓名:
Roham RAFIEE;Reza SHAHZADI;Hossein SPERESP
作者机构:
Faculty of New Science and Technologies,University of Tehran,Tehran 1439955171,Iran
引用格式:
[1]Roham RAFIEE;Reza SHAHZADI;Hossein SPERESP-.Structural optimization of filament wound composite pipes)[J].结构与土木工程前沿,2022(08):1056-1069
A类:
B类:
Structural,optimization,filament,wound,composite,pipes,An,procedure,developed,obtaining,optimal,structural,design,minimum,cost,utilized,pressurized,water,waste,pipelines,First,short,term,long,constraints,dictated,by,international,standards,are,identified,Then,computational,tools,predicting,properties,architecture,layers,validated,relying,experimental,analysis,integrated,process,minimize,price,main,objective,taking,into,account,requirements,manufacturing,limitations,treating,up,sequence,fiber,volume,fraction,winding,angle,number,total,variables,method,implemented,various,case,studies,results,presented,discussed
AB值:
0.591387
相似文献
Experimental and numerical investigation into the non-explosive excavation of tunnels
Quan Zhang;Zhigang Tao;Chun Yang;Shan Guo;Manchao He;Chongyuan Zhang;Huiya Niu;Chao Wang;Shen Wang-School of Mines,China University of Mining and Technology,Xuzhou,Jiangsu,221116,China;State Key Laboratory of Geomechanics and Deep Underground Engineering,China University of Mining and Technology,Beijing,100083,China;School of Resources and Safety Engineering,Central South University,Changsha,410083,China;Department of Mining and Materials Engineering,McGill University,Montreal,QC,H3A 0E8,Canada;Institute of Geomechanics,Chinese Academy of Geological Sciences,Beijing,100081,China;College of Environmental Science and Engineering,Ocean University of China,Qingdao,266100,China;School of Energy Science and Engineering,Henan Polytechnic University,Jiaozuo,454003,China
Progress in ceramic materials and structure design toward advanced thermal barrier coatings
Zhi-Yuan WEI;Guo-Hui MENG;Lin CHEN;Guang-Rong LI;Mei-Jun LIU;Wei-Xu ZHANG;Li-Na ZHAO;Qiang ZHANG;Xiao-Dong ZHANG;Chun-Lei WAN;Zhi-Xue QU;Jing FENG;Ling LIU;Hui DONG;Ze-Bin BAO;Xiao-Feng ZHAO;Xiao-Feng ZHANG;Lei GUO;Liang WANG;Bo CHENG;Wei-Wei ZHANG;Peng-Yun XU;Guan-Jun YANG;Hong-Neng CAI;Hong CUI;You WANG;Fu-Xing YE;Zhuang MA;Wei PAN;Min LIU;Ke-Song ZHOU;Chang-Jiu LI-State Key Laboratory for Mechanical Behavior of Materials,School of Materials Science and Engineering,Xi'an Jiaotong University,Xi'an 710049,China;State Key Laboratory for Strength and Vibration of Mechanical Structures,Department of Engineering Mechanics,School of Aerospace Engineering,Xi'an Jiaotong University,Xi'an 710049,China;Xi'an Aerospace Composite Research Institute,Xi'an 710025,China;AECC Beijing Institute of Aeronautical Materials,Beijing 100095,China;School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China;State Key Laboratory of New Ceramics&Fine Processing,School of Materials Science and Engineering,Tsinghua University,Beijing 100084,China;Faculty of Materials and Manufacturing,Key Laboratory of Advanced Functional Materials,Education Ministry of China,Faculty of Materials and Manufacturing,Beijing University of Technology,Beijing 100124,China;Faculty of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093,China;School of Materials Science and Engineering,Beijing Institute of Technology,Beijing 100081,China;Xi'an Key Laboratory of High Performance Oil and Gas Field Materials,School of Materials Science and Engineering,Xi'an Shiyou University,Xi'an 710065,China;Shi-Changxu Innovation Center for Advanced Materials,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China;Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming,Shanghai Jiao Tong University,Shanghai 200240,China;National Engineering Laboratory for Modern Materials Surface Engineering Technology,the Key Lab of Guangdong for Modern Surface Engineering Technology,Institute of New Materials,Guangdong Academy of Sciences,Guangzhou 510650,China;School of Materials Science and Engineering,Tianjin University,Tianjin 300072,China;Integrated Computational Materials Research Centre,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 201899,China;State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal,Lanzhou University of Technology,Lanzhou 730050,China;School of Materials Science and Engineering,Chang'an University,Xi'an 710064,China;Department of Mechanical and Electrical Engineering,Ocean University of China,Qingdao 266100,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。