首站-论文投稿智能助手
典型文献
旋转机械故障诊断模型的泛化性能研究与改进
文献摘要:
泛化能力是机器学习的重要评价指标,由于现实中的工业应用中外部环境十分复杂,在旋转机械工作时,其负载是不断变化的.如何使用一种负载下训练好的网络模型对另一种负载的数据集进行故障诊断是目前众多学者的研究重点.针对网络模型训练与测试时的数据特征分布不同来进行网络泛化性能的改进研究,通过改进网络模型的首层卷积核尺寸与随机失活来加强网络特征提取能力,采用AdaBN优化算法使得网络模型在训练与测试时的参数进行调整,提高网络的泛化能力.
文献关键词:
故障诊断;特征提取;卷积核尺度;泛化能力
作者姓名:
张晓锋;郝如江;夏晗铎;段泽森;程旺
作者机构:
石家庄铁道大学 机械工程学院,河北 石家庄 050043
引用格式:
[1]张晓锋;郝如江;夏晗铎;段泽森;程旺-.旋转机械故障诊断模型的泛化性能研究与改进)[J].石家庄铁道大学学报(自然科学版),2022(02):108-112
A类:
AdaBN,卷积核尺度
B类:
旋转机械故障诊断,故障诊断模型,泛化性能,泛化能力,工业应用,十分复杂,练好,模型训练,数据特征,特征分布,同来,改进研究,进网,首层,卷积核尺寸,随机失活,活来,网络特征,特征提取能力
AB值:
0.322016
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。