典型文献
基于改进U-Net的海岸线提取方法
文献摘要:
遥感影像海陆分割对于海岸线提取及其动态监测具有重要意义.传统的基于光谱特征和图像处理的海岸线识别和提取方法,在面对高分辨率遥感图像复杂的纹理和空间分布时,只能生成具有局限性的图像特征结果,且分割结果准确率不高.本文将深度卷积神经网络应用于高分遥感图像的海陆分割问题,并在经典编码器-解码器结构的基础上进行了创新.首先,为了降低调参难度引入批归一化层,降低了网络对参数的尺度和初始值的敏感度;其次,采用转置卷积代替传统卷积,在模型训练过程中通过梯度递减算法,不断更新参数权值,显著提高语义分割的精度.利用研究区域高分一号遥感图像数据对于人工岸线及自然岸线的分割实验结果显示:相较于经典U-Net与SegNet,改进U-Net网络,对于各种自然岸线和人工岸线具有更低的边界模糊度和更准确的分割结果,对于自然岸线的提取结果,漏检、错检现象较少;对于人工岸线的提取具有更大的感受野,能够提取岸线的空间结构信息,避免误分类.面对日益丰富的高分辨率的遥感影像数据源,基于改进U-Net的海岸线提取,能更好地保留边界信息且具备更优的语义分割效果,可以更为准确地挖掘高分遥感影像的空间分布特征、纹理特征以及光谱特征,从而提升分类的准确性.
文献关键词:
高分遥感图像;深度学习;海岸线提取;语义分割;U-Net
中图分类号:
作者姓名:
王蕊;丁咚;李广雪;任昕;韩慧慧
作者机构:
中国海洋大学 海洋地球科学学院, 山东 青岛 266100;中国海洋大学 海底科学与探测技术教育部重点实验室, 山东 青岛 266100;青岛海洋科学与技术国家实验室 海洋矿产资源评价与探测技术功能实验室, 山东 青岛 266580
文献出处:
引用格式:
[1]王蕊;丁咚;李广雪;任昕;韩慧慧-.基于改进U-Net的海岸线提取方法)[J].海洋科学,2022(05):54-64
A类:
B类:
海岸线提取,海陆分割,光谱特征,和图像,高分辨率遥感图像,图像特征,深度卷积神经网络,网络应用,高分遥感图像,编码器,解码器,低调,批归一化层,初始值,转置卷积,模型训练,训练过程,减算,不断更新,权值,语义分割,利用研究,高分一号,图像数据,自然岸线,SegNet,边界模糊,模糊度,漏检,感受野,空间结构信息,误分类,遥感影像数据,数据源,分割效果,高分遥感影像,空间分布特征,纹理特征
AB值:
0.291422
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。