典型文献
改进多尺度卷积神经网络的人脸表情识别研究
文献摘要:
为了有效改善现有人脸表情识别模型中存在的信息丢失严重、组件间相对空间联系不密切的问题,提出了一种改进的多尺度卷积神经网络模型,通过构建深层多尺度卷积神经网络,使模型能够挖掘出更多潜在的特征信息;通过特征融合促进信息的流通和重利用,减少池化操作所引起的重要信息丢失,使得模型具有更好的学习能力;通过控制每层多尺度卷积神经网络的卷积核大小来平衡全局特征与局部特征之间的关系,从而增强不同组件间的相对空间联系,避免了特征图通道信息的冗余.在两种不同的人脸表情识别数据集JAFFE和FER-2013上进行验证表明,算法在测试集上的准确率分别达到了95.45%和76.56%,证明了所提算法的有效性和先进性.
文献关键词:
多尺度卷积;特征融合;卷积核;全局特征;局部特征
中图分类号:
作者姓名:
李军;李明
作者机构:
重庆师范大学 计算机与信息科学学院,重庆401331
文献出处:
引用格式:
[1]李军;李明-.改进多尺度卷积神经网络的人脸表情识别研究)[J].重庆邮电大学学报(自然科学版),2022(02):201-207
A类:
B类:
多尺度卷积神经网络,人脸表情识别,识别模型,信息丢失,空间联系,卷积神经网络模型,挖掘出,特征信息,特征融合,融合促进,重利,池化操作,重要信息,每层,卷积核,全局特征,局部特征,特征图,别数,JAFFE,FER,测试集
AB值:
0.265876
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。