典型文献
基于堆叠门控循环单元残差网络的知识追踪模型研究
文献摘要:
知识追踪任务是根据学生历史做题记录和其他辅助信息追踪学生知识水平的变化过程,以及预测学生在下一时刻作答的结果.由于已有的神经网络知识追踪模型在效果和性能上还有待提升,提出了基于堆叠门控循环单元(Gated Recurrent Unit,GRU)的深度残差(Stacked-Gated Recurrent Unit-Residual,S-GRU-R)网络.针对长短期记忆网络(Long Short-term Memory,LSTM)参数过多导致过拟合问题,用GRU代替LSTM学习做题序列中的信息,采用堆叠GRU扩大序列学习容量,并用残差连接降低模型训练的难度.S-GRU-R在数据集Statics2011上进行了实验,并用AUC(Area Under the Curve)和F1-score作为评估指标.结果表明S-GRU-R在这2个评估指标上都超过了其他类似的循环神经网络模型.
文献关键词:
深度学习;知识追踪;循环神经网络;门控循环单元;残差网络
中图分类号:
作者姓名:
黄彩蝶;王昕萍;陈良育;刘勇
作者机构:
华东师范大学软件工程学院,上海 200062;华东师范大学基础教育与终身教育发展部,上海 200062
文献出处:
引用格式:
[1]黄彩蝶;王昕萍;陈良育;刘勇-.基于堆叠门控循环单元残差网络的知识追踪模型研究)[J].华东师范大学学报(自然科学版),2022(06):68-78
A类:
Statics2011
B类:
堆叠,门控循环单元,残差网络,知识追踪,追踪模型,做题,题记,辅助信息,信息追踪,学生知识,知识水平,变化过程,预测学,刻作,作答,Gated,Recurrent,Unit,GRU,Stacked,Residual,长短期记忆网络,Long,Short,term,Memory,过拟合,题序,序列学习,残差连接,模型训练,Area,Under,Curve,score,循环神经网络模型
AB值:
0.428823
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。