首站-论文投稿智能助手
典型文献
Review on Metallization Approaches for High-Efficiency Silicon Heterojunction Solar Cells
文献摘要:
Crystalline silicon(c-Si)heterojunction(HJT)solar cells are one of the promising technologies for next-generation industrial high-efficiency silicon solar cells,and many efforts in transferring this technology to high-volume manufacturing in the photovoltaic(PV)industry are currently ongoing.Metallization is of vital importance to the PV performance and long-term reliability of HJT solar cells.In this review,we summarize the development status of metallization approaches for high-efficiency HJT solar cells.For conventional screen printing technology,to avoid the degradation of the passivation properties of the amorphous silicon layer,a low-temperature-cured(<250℃)paste and process are needed.This process,in turn,leads to high line/contact resistances and high paste costs.To improve the conductivity of electrodes and reduce the metalliza-tion cost,multi-busbar,fine-line printing,and low-temperature-cured silver-coated copper pastes have been developed.In addition,several potential metallization technologies for HJT solar cells,such as the Smart Wire Contacting Technology,pattern transfer printing,inkjet/FlexTrailprinting,and copper electroplating,are discussed in detail.Based on the summary,the potential and challenges of these metallization technologies for HJT solar cells are analyzed.
文献关键词:
作者姓名:
Yulian Zeng;Chen-Wei Peng;Wei Hong;Shan Wang;Cao Yu;Shuai Zou;Xiaodong Su
作者机构:
School of Physical Science and Technology,Jiangsu Key Laboratory of Thin Films,Soochow University,Suzhou 215006,China;Suzhou Maxwell Technologies Co.,Ltd.,Suzhou 215200,China;Suzhou Isilver Materials Co.,Ltd,Suzhou 215129,China
引用格式:
[1]Yulian Zeng;Chen-Wei Peng;Wei Hong;Shan Wang;Cao Yu;Shuai Zou;Xiaodong Su-.Review on Metallization Approaches for High-Efficiency Silicon Heterojunction Solar Cells)[J].天津大学学报(英文版),2022(05):358-373
A类:
Metallization,metalliza,busbar,Contacting,FlexTrailprinting
B类:
Review,Approaches,High,Efficiency,Silicon,Heterojunction,Solar,Cells,Crystalline,silicon,heterojunction,HJT,solar,cells,are,one,promising,technologies,next,generation,industrial,high,efficiency,many,efforts,transferring,this,technology,volume,manufacturing,photovoltaic,PV,industry,currently,ongoing,vital,importance,performance,long,term,reliability,In,review,we,summarize,development,status,metallization,approaches,For,conventional,screen,avoid,degradation,passivation,properties,amorphous,layer,low,temperature,cured,process,needed,This,turn,leads,contact,resistances,costs,To,improve,conductivity,electrodes,reduce,multi,fine,silver,coated,copper,pastes,have,been,developed,addition,several,potential,such,Smart,Wire,Technology,pattern,inkjet,electroplating,discussed,detail,Based,summary,challenges,these,analyzed
AB值:
0.551481
相似文献
Recent Progress of Electrode Materials for Flexible Perovskite Solar Cells
Yumeng Xu;Zhenhua Lin;Wei Wei;Yue Hao;Shengzhong Liu;Jianyong Ouyang;Jingjing Chang-State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology,School of Microelectronics,Xidian University,2 South Taibai Road,Xi'an 710071,People's Republic of China;Key Laboratory of Applied Surface and Colloid Chemistry,Ministry of Education,Institute for Advanced Energy Materials,School of Materials Science and Engineering,Shaanxi Normal University,Xi'an 710119,People's Republic of China;Department of Materials Science and Engineering,National University of Singapore,7 Engineering Drive 1,Singapore 117574,Singapore;Advanced Interdisciplinary Research Center for Flexible Electronics,Xidian University,2 South Taibai Road,Xi'an 710071,People's Republic of China
Effects of Flexible Conjugation-Break Spacers of Non-Conjugated Polymer Acceptors on Photovoltaic and Mechanical Properties of All-Polymer Solar Cells
Qiaonan Chen;Yung Hee Han;Leandro R.Franco;Cleber F.N.Marchiori;Zewdneh Genene;C.Moyses Araujo;Jin-Woo Lee;Tan Ngoc-Lan Phan;Jingnan Wu;Donghong Yu;Dong Jun Kim;Taek-Soo Kim;Lintao Hou;Bumjoon J.Kim;Ergang Wang-Siyuan Laboratory,Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials,Department of Physics,Jinan University,Guangzhou 510632,People's Republic of China;Department of Chemistry and Chemical Engineering,Chalmers University of Technology,SE-412 96,G?teborg,Sweden;Department of Chemical and Biomolecular Engineering,Korea Advanced Institute of Science and Technology(KAIST),Daejeon 34141,Republic of Korea;Department of Engineering and Physics,Karlstad University,65188 Karlstad,Sweden;Materials Theory Division,Department of Physics and Astronomy,Uppsala University,75120 Uppsala,Sweden;Department of Chemistry and Bioscience,Aalborg University,9220 Aalborg,Denmark;Sino-Danish Center for Education and Research,8000 Aarhus,Denmark;Department of Mechanical Engineering,Korea Advanced Institute of Science and Technology(KAIST),Daejeon 34141,Republic of Korea;School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,People's Republic of China
Recent Advancements on Photothermal Conversion and Antibacterial Applications over MXenes-Based Materials
Shuyan Hao;Hecheng Han;Zhengyi Yang;Mengting Chen;Yanyan Jiang;Guixia Lu;Lun Dong;Hongling Wen;Hui Li;Jiurong Liu;Lili Wu;Zhou Wang;Fenglong Wang-Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education,Shandong University,Jinan 250061,People's Republic of China;Department of Virology,School of Public Health,Shandong University,Jinan 250012,People's Republic of China;Shenzhen Research Institute of Shandong University,A301 Virtual University Park in South District of Nanshan High-Tech Zone,Shenzhen 518057,People's Republic of China;School of Civil Engineering,Qingdao University of Technology,Qingdao 266033,People's Republic of China;Department of Breast Surgery,Qilu Hospital,Shandong University,Jinan 250012,People's Republic of China
Influence of Halide Choice on Formation of Low-Dimensional Perovskite Interlayer in Efficient Perovskite Solar Cells
Xueping Liu;Thomas Webb;Linjie Dai;Kangyu Ji;Joel A.Smith;Rachel C.Kilbride;Mozhgan Yavari;Jinxin Bi;Aobo Ren;Yuanyuan Huang;Zhuo Wang;Yonglong Shen;Guosheng Shao;Stephen J.Sweeney;Steven Hinder;Hui Li;David G.Lidzey;Samuel D.Stranks;Neil C.Greenham;S.Ravi P.Silva;Wei Zhang-State Center for International Cooperation on Designer Low-carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China;Advanced Technology Institute,Department of Electrical and Electronic Engineering,University of Surrey,Guildford GU2 7XH,UK;Cavendish Laboratory,University of Cambridge,Cambridge CB3 0HE,UK;Department of Physics and Astronomy,University of Sheffield,Sheffield S37RH,UK;Department of Physics,University of Oxford,Clarendon Laboratory,Oxford OX1 3PU,UK;Advanced Technology Institute and Department of Physics,University of Surrey,Guildford GU2 7XH,UK;The Surface Analysis Laboratory,Department of Mechanical Engineering Sciences,University of Surrey,Guildford GU2 7XH,UK;Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China;Department of Chemical Engineering and Biotechnology,University of Cambridge,Cambridge CB3 0AS,UK
Air-Processed Efficient Organic Solar Cells from Aromatic Hydrocarbon Solvent without Solvent Additive or Post-Treatment:Insights into Solvent Effect on Morphology
Ruijie Ma;Tao Yang;Yiqun Xiao;Tao Liu;Guangye Zhang;Zhenghui Luo;Gang Li;Xinhui Lu;He Yan;Bo Tang-College of Chemistry,Chemical Engineering and Materials Science,Key Laboratory of Molecular and Nano Probes,Ministry of Education,Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong,Institute of Materials and Clean Energy,Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals,Shandong Normal University,Jinan 250014,China;Department of Chemistry,Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials,Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration&Reconstruction,Hong Kong University of Science and Technology,Clear Water Bay,Kowloon,Hong Kong,China;College of New Materials and New Energies,Shenzhen Technology University,Shenzhen 518118 China;Department of Physics,Chinese University of Hong Kong,New Territories Hong Kong,China;Hong Kong University of Science and Technology-Shenzhen Research Institute,No.9 Yuexing first RD,Hi-tech Park,Nanshan,Shenzhen 518057,China;Institute of Polymer Optoelectronic Materials and Devices,State Key Laboratory of Luminescent Materials and Devices,South China University of Technology(SCUT),Guangzhou 510640,China
Laser-Induced Recoverable Fluorescence Quenching of Perovskite Films at a Microscopic Grain Scale
Yuren Xiang;Yameng Cao;Wenqiang Yang;Rui Hu;Sebastian Wood;Bowei Li;Qin Hu;Fan Zhang;Jujie He;Mozhgan Yavari;Jinlai Zhao;Yunlong Zhao;Jun Song;Junle Qu;Rui Zhu;Thomas P.Russell;S.Ravi P.Silva;Wei Zhang-Center for Biomedical Optics and Photonics(CBOP)&College of Physics and Optoelectronic Engineering,Key Laboratory of Optoelectronic Devices and Systems,Shenzhen University,Shenzhen 518060,China;Advanced Technology Institute,University of Surrey,Guildford GU2 7XH,UK;National Physical Laboratory,Hampton Road,Teddington TW11 0LW,UK;Department of Polymer Science and Engineering,University of Massachusetts,Amherst MA 01003,USA;State Key Laboratory for Artificial Microstructure and Mesoscopic Physics,School of Physics,Peking University,Beijing 100871,China;College of materials science and engineering,Shenzhen Key laboratory of Polymer Science and Technology,Guangdong Research Center for interfacial Engineering of Functional Materials,Shenzhen University,Shenzhen 518060,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。