首站-论文投稿智能助手
典型文献
FedCDR:Privacy-preserving federated cross-domain recommendation
文献摘要:
Cross-Domain Recommendation(CDR)aims to solve data sparsity and cold-start problems by utilizing a relatively information-rich source domain to improve the recommendation performance of the data-sparse target domain.However,most existing approaches rely on the assumption of centralized storage of user data,which undoubtedly poses a significant risk of user privacy leakage because user data are highly privacy-sensitive.To this end,we propose a privacy-preserving Federated framework for Cross-Domain Recommendation,called FedCDR.In our method,to avoid leakage of user privacy,a general recommendation model is trained on each user's personal device to obtain embed-dings of users and items,and each client uploads weights to the central server.The central server then aggregates the weights and distributes them to each client for updating.Furthermore,because the weights implicitly contain private information about the user,local differential privacy is adopted for the gradients before uploading them to the server for better protection of user privacy.To distill the relationship of user embedding between two domains,an embedding transformation mechanism is used on the server side to learn the cross-domain embedding transformation model.Extensive experiments on real-world datasets demonstrate that our method achieves performance comparable with that of existing data-centralized methods and effectively protects user privacy.
文献关键词:
作者姓名:
Dengcheng Yan;Yuchuan Zhao;Zhongxiu Yang;Ying Jin;Yiwen Zhang
作者机构:
School of Computer Science and Technology,Anhui University,Hefei,China;Weifang Key Laboratory of Blockchain on Agricultural Vegetables,Weifang University of Science and Technology,Weifang,China;Department of Management,Hefei University,Hefei,China
引用格式:
[1]Dengcheng Yan;Yuchuan Zhao;Zhongxiu Yang;Ying Jin;Yiwen Zhang-.FedCDR:Privacy-preserving federated cross-domain recommendation)[J].数字通信与网络(英文),2022(04):552-560
A类:
FedCDR,dings,uploads
B类:
Privacy,preserving,federated,cross,recommendation,Cross,Domain,Recommendation,aims,solve,sparsity,cold,start,problems,by,utilizing,relatively,information,rich,source,improve,performance,sparse,target,However,most,existing,approaches,rely,assumption,centralized,storage,which,undoubtedly,poses,significant,risk,privacy,leakage,because,are,highly,sensitive,To,this,propose,Federated,framework,called,In,avoid,general,model,trained,each,personal,device,obtain,users,items,client,weights,server,then,aggregates,distributes,them,updating,Furthermore,implicitly,contain,private,about,local,differential,adopted,gradients,before,uploading,better,protection,distill,relationship,embedding,between,two,domains,transformation,mechanism,used,side,learn,Extensive,experiments,real,world,datasets,demonstrate,that,achieves,comparable,methods,effectively,protects
AB值:
0.532102
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。