首站-论文投稿智能助手
典型文献
Review:Processing and Applications of Polyacrylonitrile Derived Carbon Materials
文献摘要:
Polyacrylonitrile (PAN) is a well-known polymer with features of great stability, outstanding physical and chemical resistance. Owing to its high carbon yield and stable performance, PAN has been widely used as a carbonizable precursor for preparing carbon materials with inherent N dopant through an oxidative stabilization and a following carbonization process. The structures and compositions of PAN precursors would further influence the formation of the resulting carbon materials. Hence, it is crucial to develop efficient processing methods to prepare PAN-based precursors with suitable morphologies and compositions. The obtained carbon materials with large surface area and good electric conductivity could be employed in a variety of fields such as structural materials, energy storage and conversion as well as adsorption and separation.
文献关键词:
作者姓名:
Jianhong Wang;Yang Yang;Rui Liu
作者机构:
Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education,School of Materials Science and Engineering,Tongji University,Shanghai 201804,China
引用格式:
[1]Jianhong Wang;Yang Yang;Rui Liu-.Review:Processing and Applications of Polyacrylonitrile Derived Carbon Materials)[J].哈尔滨工业大学学报(英文版),2022(06):128-150
A类:
Polyacrylonitrile,carbonizable
B类:
Review,Processing,Applications,Derived,Carbon,Materials,PAN,well,known,polymer,features,great,stability,outstanding,physical,chemical,resistance,Owing,its,high,yield,stable,performance,has,been,widely,used,preparing,materials,inherent,dopant,through,oxidative,stabilization,following,carbonization,structures,compositions,precursors,would,further,influence,formation,resulting,Hence,crucial,develop,efficient,processing,methods,prepare,suitable,morphologies,obtained,large,surface,area,good,electric,conductivity,could,employed,variety,fields,such,structural,energy,storage,conversion,adsorption,separation
AB值:
0.633837
相似文献
Biomass-Derived Carbon Heterostructures Enable Environmentally Adaptive Wideband Electromagnetic Wave Absorbers
Zhichao Lou;Qiuyi Wang;Ufuoma I.Kara;Rajdeep S.Mamtani;Xiaodi Zhou;Huiyang Bian;Zhihong Yang;Yanjun Li;Hualiang Lv;Solomon Adera;Xiaoguang Wang-Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,Nanjing Forestry University,Nanjing 210037,People's Republic of China;Willian G.Lowrie Department of Chemical and Biomolecular Engineering,The Ohio State University,Columbus,OH 43210,USA;Institute of Materials Research and Engineering,Agency for Sciences,Technology and Research,Singapore,Singapore;Department of Mechanical Engineering,University of Michigan,Ann Arbor,MI 48109,USA;Sustainability Institute,The Ohio State University,Columbus,OH 43210,USA
Biomass Template Derived Boron/Oxygen Co-Doped Carbon Particles as Advanced Anodes for Potassium-Ion Batteries
Xueyu Lian;Zhongti Sun;Qingqing Mei;Yuyang Yi;Junhua Zhou;Mark H.Rümmeli;Jingyu Sun-College of Energy,Soochow Institute for Energy and Materials InnovationS(SIEMIS),Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province,Soochow University,Suzhou 215006,China;Beijing Graphene Institute(BGI),Beijing 100095,China;Department of Chemistry,University of Manchester,Manchester M13 9PL,UK Prof.M.H.Rümmeli;Leibniz Institute for Solid State and Materials Research Dresden,P.O.Box 270116,Dresden D-01171,Germany;Centre of Polymer and Carbon Materials,Polish Academy of Sciences,M.Curie-Sklodowskiej 34,Zabrze 41-819,Poland;Institute of Environmental Technology,VSB-Technical University of Ostrava,17.Listopadu 15,Ostrava 708 33,Czech Republic
Approaching Superior Potassium Storage of Carbonaceous Anode Through a Combined Strategy of Carbon Hybridization and Sulfur Doping
Qianqian Yao;Yanmei Gan;Zuju Ma;Xiangying Qian;Suzhi Cai;Yi Zhao;Lunhui Guan;Wei Huang-Fujian Cross Strait Institute of Flexible Electronics(Future Technologies),Fujian Normal University,Fuzhou 350117,China;CAS Key Laboratory of Design and Assembly of Functional Nanostructures,Fujian Key Laboratory of Nanomaterials,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350108,China;School of Environmental and Materials Engineering,Yantai University,Yantai 264005,China;Shaanxi Institute of Flexible Electronics(SIFE),Northwestern Polytechnical University(NPU),Xi'an 710072,China;Key Laboratory of Flexible Electronics(KLOFE)&Institute of Advanced Materials(IAM),Nanjing Tech University(NanjingTech),Nanjing 211800,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。