典型文献
Modified Subgradient Extragradient Method for Variational Inequality Problems and Fixed Point Problems
文献摘要:
Many approaches inquiring into variational inequality problems have been put forward, among which subgradient extragradient method is of great significance. A novel algorithm is presented in this article for resolving quasi-nonexpansive fixed point problem and pseudomonotone variational inequality problem in a real Hilbert interspace. In order to decrease the execution time and quicken the velocity of convergence, the proposed algorithm adopts an inertial technology. Moreover, the algorithm is by virtue of a non-monotonic step size rule to acquire strong convergence theorem without estimating the value of Lipschitz constant. Finally, numerical results on some problems authenticate that the algorithm has preferable efficiency than other algorithms.
文献关键词:
中图分类号:
作者姓名:
Xiaoyin Li;Hongwei Liu;Jiangli Cheng;Dongyao Zhang
作者机构:
School of Mathematics and Statistics,Xidian University,Xi'an 710126,China
文献出处:
引用格式:
[1]Xiaoyin Li;Hongwei Liu;Jiangli Cheng;Dongyao Zhang-.Modified Subgradient Extragradient Method for Variational Inequality Problems and Fixed Point Problems)[J].哈尔滨工业大学学报(英文版),2022(05):11-19
A类:
Subgradient,Extragradient,inquiring,pseudomonotone,quicken
B类:
Modified,Method,Variational,Inequality,Problems,Fixed,Point,Many,approaches,into,variational,inequality,problems,have,been,put,forward,among,which,subgradient,extragradient,method,great,significance,novel,presented,this,article,resolving,quasi,nonexpansive,fixed,point,real,Hilbert,interspace,order,decrease,execution,velocity,convergence,proposed,adopts,inertial,technology,Moreover,by,virtue,monotonic,step,size,rule,acquire,strong,theorem,without,estimating,value,Lipschitz,constant,Finally,numerical,results,some,authenticate,that,has,preferable,efficiency,than,other,algorithms
AB值:
0.688583
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。