首站-论文投稿智能助手
典型文献
比较机器学习等算法对肉鸡产蛋性状育种值估计的准确性
文献摘要:
我国白羽肉鸡育种中,通过遗传途径提高产蛋数和控制合适的蛋重是培育优良品系的一个重要方面.为探索适合我国白羽肉鸡育种中的基因组选择模型,本研究以2 474只白羽肉鸡品系的产蛋性状为研究对象,主要分析了机器学习算法 KAML、BLUP(包括:PBLUP、GBLUP、SSGBLUP)和 Bayes(包括:Bayes A、Bayes B 和 Bayes Cπ)方法对产蛋数和蛋重性状的预测准确性,准确性以5倍交叉验证进行评估.利用系谱以及基因组信息估计了产蛋数和蛋重性状的遗传力和遗传相关.结果表明,产蛋数性状遗传力为0.061~0.16,属于低遗传力性状;蛋重遗传力为0.28~0.39,属于中等遗传力性状;产蛋数与蛋重是中等遗传负相关(-0.518~-0.184),不同阶段产蛋数之间是强的遗传正相关(0.736~0.998).不同模型预测43周产蛋数和52周蛋重的育种值估计准确性结果表明,KAML方法对两者的预测准确性分别为0.115和0.266,与GBLUP方法(准确性分别为0.118和0.283)和SSGBLUP方法(准确性分别为0.136和0.259)的准确性差异显著,同时显著低于Bayes方法(准确性分别为0.230~0.239、0.336~0.340)的预测准确性,PBLUP方法预测准确性最低(准确性分别为0.095和0.246).因此,在白羽肉鸡产蛋数和蛋重性状中应用Bayes方法将获得最高的育种值估计准确性.
文献关键词:
白羽肉鸡;产蛋性状;基因组选择;机器学习;遗传参数
作者姓名:
丁纪强;李庆贺;张高猛;李森;郑麦青;文杰;赵桂苹
作者机构:
中国农业科学院北京畜牧兽医研究所,北京100193
文献出处:
引用格式:
[1]丁纪强;李庆贺;张高猛;李森;郑麦青;文杰;赵桂苹-.比较机器学习等算法对肉鸡产蛋性状育种值估计的准确性)[J].畜牧兽医学报,2022(05):1364-1372
A类:
KAML,PBLUP,SSGBLUP
B类:
产蛋性状,育种值,白羽肉鸡,产蛋数,蛋重,优良品系,基因组选择,机器学习算法,Bayes,预测准确性,交叉验证,系谱,基因组信息,信息估计,遗传力,遗传相关,性状遗传,遗传参数
AB值:
0.171495
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。