首站-论文投稿智能助手
典型文献
Ghrelin alleviates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells
文献摘要:
Ghrelin is a neuropeptide that has various physiological functions and has been demonstrated to be neuroprotective in a number of neurological disease models. However, the underlying mechanisms of ghrelin in Parkinson's disease remain largely unexplored. The current study aimed to study the effects of ghrelin in a 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease model and evaluate the potential underlying mechanisms. In the present study, we treated an SH-SY5Y cell model with 6-OHDA, and observed that pretreatment with different concentrations of ghrelin (1, 10, and 100 nM) for 30 minutes relieved the neurotoxic effects of 6-OHDA, as revealed by Cell Counting Kit-8 and Annexin V/propidium iodide (PI) apoptosis assays. Reverse transcription quantitative polymerase chain reaction and western blot assay results demonstrated that 6-OHDA treatment upregulated α-synuclein and lincRNA-p21 and downregulated TG-interacting factor 1 (TGIF1), which was predicted as a potential transcription regulator of the gene encoding α-synuclein (SNCA). Ghrelin pretreatment was able to reverse the trends caused by 6-OHDA. The Annexin V/PI apoptosis assay results revealed that inhibiting either α-synuclein or lincRNA-p21 expression with small interfering RNA (siRNA) relieved 6-OHDA-induced cell apoptosis. Furthermore, inhibiting lincRNA-p21 also partially upregulated TGIF1. By retrieving information from a bioinformatics database and performing both double luciferase and RNA immunoprecipitation assays, we found that lincRNA-p21 and TGIF1 were able to form a double-stranded RNA-binding protein Staufen homolog 1 (STAU1) binding site and further activate the STAU1-mediated mRNA decay pathway. In addition, TGIF1 was able to transcriptionally regulate α-synuclein expression by binding to the promoter of SNCA. The Annexin V/PI apoptosis assay results showed that either knockdown of TGIF1 or overexpression of lincRNA-p21 notably abolished the neuroprotective effects of ghrelin against 6-OHDA-induced neurotoxicity. Collectively, these findings suggest that ghrelin exerts neuroprotective effects against 6-OHDA-induced neurotoxicity via the lincRNA-p21/TGIF1/α-synuclein pathway.
文献关键词:
作者姓名:
Xin He
作者机构:
Department of Neurobiology,School of Life Sciences,China Medical University,Shenyang,Liaoning Province,China;Department of Neurology,Shengjing Hospital of China Medical University,Shenyang,Liaoning Province,China;Department of Orthopedics,First Hospital of China Medical University,Shenyang,Liaoning Province,China;Department of Neurosurgery,Shengjing Hospital of China Medical University,Shenyang,Liaoning Province,China
引用格式:
[1]Xin He-.Ghrelin alleviates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells)[J].中国神经再生研究(英文版),2022(01):170-177
A类:
Staufen,STAU1
B类:
Ghrelin,alleviates,hydroxydopamine,induced,neurotoxicity,SH,SY5Y,cells,neuropeptide,that,has,various,physiological,functions,been,demonstrated,neuroprotective,number,neurological,disease,models,However,underlying,mechanisms,ghrelin,Parkinson,remain,largely,unexplored,current,study,aimed,effects,OHDA,evaluate,potential,In,present,treated,observed,pretreatment,different,concentrations,nM,minutes,relieved,revealed,by,Cell,Counting,Kit,Annexin,propidium,iodide,apoptosis,assays,Reverse,quantitative,polymerase,chain,reaction,western,blot,results,upregulated,synuclein,lincRNA,p21,downregulated,interacting,TGIF1,which,was,predicted,regulator,gene,encoding,SNCA,able,reverse,trends,caused,inhibiting,either,small,interfering,siRNA,Furthermore,also,partially,By,retrieving,information,from,bioinformatics,database,performing,both,double,luciferase,immunoprecipitation,found,were,stranded,binding,protein,homolog,site,further,activate,mediated,decay,pathway,addition,transcriptionally,promoter,showed,knockdown,overexpression,notably,abolished,against,Collectively,these,findings,suggest,exerts
AB值:
0.459212
相似文献
Romidepsin (FK228) improves the survival of allogeneic skin grafts through downregulating the production of donor-specific antibody via suppressing the IRE1 α-XBP1 pathway
Yuliang GUO;Siyu SONG;Xiaoxiao DU;Li TIAN;Man ZHANG;Hongmin ZHOU;Zhonghua Klaus CHEN;Sheng CHANG-Institute of Organ Transplantation,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China;Key Laboratory of Organ Transplantation,Ministry of Education,NHC Key Laboratory of Organ Transplantation,Key Laboratory of Organ Transplantation,Chinese Academy of Medical Sciences,Wuhan 430030,China;Henan Key Laboratory of Digestive Organ Transplantation,Open and Key Laboratory of Hepatobiliary&Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities,Zhengzhou Key Laboratory of Hepatobiliary&Pancreatic Diseases and Organ Transplantation,Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,China;Department of Cardiothoracic and Vascular Surgery,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China
Spirulina platensis aqueous extracts ameliorate colonic mucosal damage and modulate gut microbiota disorder in mice with ulcerative colitis by inhibiting inflammation and oxidative stress
Jian WANG;Liqian SU;Lun ZHANG;Jiali ZENG;Qingru CHEN;Rui DENG;Ziyan WANG;Weidong KUANG;Xiaobao JIN;Shuiqing GUI;Yinghua XU;Xuemei LU-Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances,School of Life Science and Biopharmaceutics,Guangdong Pharmaceutical University,Guangzhou 510006,China;School of Pharmacy,Guangdong Pharmaceutical University,Guangzhou 510006,China;Intensive Care Unit,Shenzhen Second People's Hospital,the First Affiliated Hospital of Shenzhen University,Shenzhen 518031,China;Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products,National Institutes for Food and Drug Control,Beijing 102629,China
CircRNA.0007127 triggers apoptosis through the miR-513a-5p/CASP8 axis in K-562 cells
Xiajing LI;Yiyu ZHANG;Ning WANG;Zhaohu YUAN;Xiaojie CHEN;Qicong CHEN;Hui DENG;Xinxin TONG;Honglin CHEN;Yuyou DUAN;Yarning WEI-School of Medicine,South China University of Technology,Guangzhou 510000,China;Department of Blood Transfusion,Shenzhen Longhua Central Hospital,Shenzhen 518000,China;Laboratory of Stem Cells and Translational Medicine,Institutes for Life Sciences,School of Medicine,South China University of Technology,Guangzhou 510000,China;School of Biomedical Sciences and Engineering,Guangzhou International Campus,South China University of Technology,Guangzhou 510000,China;Department of Blood Transfusion,the Second Affiliation Hospital of South China University of Technology,Guangzhou 510000,China;Guangdong Engineering Research Center of Precise Transfusion,Guangzhou 510000,China
Ginsenoside Rb1 alleviates diabetic kidney podocyte injury by inhibiting aldose reductase activity
Jia-yi He;Quan Hong;Bi-xia Chen;Shao-yuan Cui;Ran Liu;Guang-yan Cai;Jiao Guo;Xiang-mei Chen-Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China;Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University;Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
Silibinin relieves UVB-induced apoptosis of human skin cells by inhibiting the YAP-p73 pathway
Wei-wei Liu;Fang Wang;Can Li;Xiao-yu Song;Wuxiyar Otkur;Yu-ying Zhu;Toshihiko Hayashi;Kazunori Mizuno;Shunji Hattori;Hitomi Fujisaki;Takashi Ikejima-Wuya College of Innovation,Shenyang Pharmaceutical University,Shenyang 110016,China;CAS Key Laboratory of Separation Science for Analytical Chemistry,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China;Department of Chemistry and Life science,School of Advanced Engineering,Kogakuin University,2665-1,Nakanomachi,Hachioji,Tokyo 192-0015,Japan;Nippi Research Institute of Biomatrix,Toride,Ibaraki 302-0017,Japan;Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research&Development,Shenyang 110016,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。