首站-论文投稿智能助手
典型文献
Neat1 decreases neuronal apoptosis after oxygen and glucose deprivation
文献摘要:
Studies have shown that downregulation of nuclear-enriched autosomal transcript 1 (Neat1) may adversely affect the recovery of nerve function and the increased loss of hippocampal neurons in mice. Whether Neat1 has protective or inhibitory effects on neuronal cell apoptosis after secondary brain injury remains unclear. Therefore, the effects of Neat1 on neuronal apoptosis were observed. C57BL/6 primary neurons were obtained from the cortices of newborn mice and cultured in vitro, and an oxygen and glucose deprivation cell model was established to simulate the secondary brain injury that occurs after traumatic brain injury in vitro. The level of Neat1 expression in neuronal cells was regulated by constructing a recombinant adenovirus to infect neurons, and the effects of Neat1 expression on neuronal apoptosis after oxygen and glucose deprivation were observed. The experiment was divided into four groups: the control group, without any treatment, received normal culture; the oxygen and glucose deprivation group were subjected to the oxygen and glucose deprivation model protocol; the Neat1 overexpression and Neat1 downregulation groups were treated with Neat1 expression intervention techniques and were subjected to the in oxygen and glucose deprivation protocol. The protein expression levels of neurons p53-induced death domain protein 1 (PIDD1, a pro-apoptotic protein), caspase-2 (an apoptotic priming protein), cytochrome C (a pro-apoptotic protein), and cleaved caspase-3 (an apoptotic executive protein) were measured in each group using the western blot assay. To observe changes in the intracellular distribution of cytochrome C, the expression levels of cytochrome C in the cytoplasm and mitochondria of neurons from each group were detected by western blot assay. Differences in the cell viability and apoptosis rate between groups were detected by cell-counting kit 8 assay and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, respectively. The results showed that the apoptosis rate, PIDD1, caspase-2, and cleaved caspase-3 expression levels significantly decreased, and cell viability significantly improved in the Neat1 overexpression group compared with the oxygen and glucose deprivation group; however, Neat1 downregulation reversed these changes. Compared with the Neat1 downregulation group, the cytosolic cytochrome C level in the Neat1 overexpression group significantly decreased, and the mitochondrial cytochrome C level significantly increased. These data indicate that Neat1 upregulation can reduce the release of cytochrome C from the mitochondria to the cytoplasm by inhibiting the PIDD1-caspase-2 pathway, reducing the activation of caspase-3, and preventing neuronal apoptosis after oxygen and glucose deprivation, which might reduce secondary brain injury after traumatic brain injury. All experiments were approved by the Animal Ethics Committee of the First Affiliated Hospital of Chongqing Medical University, China, on December 19, 2020 (approval No. 2020-895).
文献关键词:
作者姓名:
Wei-Na Chai
作者机构:
Department of Neurosurgery,First Affiliated Hospital of Chongqing Medical University,Chongqing,China
引用格式:
[1]Wei-Na Chai-.Neat1 decreases neuronal apoptosis after oxygen and glucose deprivation)[J].中国神经再生研究(英文版),2022(01):163-169
A类:
PIDD1
B类:
Neat1,decreases,neuronal,apoptosis,after,oxygen,glucose,deprivation,Studies,have,shown,that,downregulation,nuclear,enriched,autosomal,transcript,may,adversely,affect,recovery,nerve,function,increased,loss,hippocampal,neurons,mice,Whether,has,protective,inhibitory,effects,secondary,brain,injury,remains,unclear,Therefore,were,observed,C57BL,primary,obtained,from,cortices,newborn,cultured,vitro,model,was,established,simulate,occurs,traumatic,cells,regulated,by,constructing,recombinant,adenovirus,infect,divided,into,four,groups,control,without,any,treatment,received,normal,subjected,protocol,overexpression,treated,intervention,techniques,protein,levels,p53,induced,death,domain,apoptotic,caspase,priming,cytochrome,cleaved,executive,measured,each,using,western,blot,assay,To,changes,intracellular,distribution,cytoplasm,detected,Differences,viability,rate,between,counting,kit,terminal,deoxynucleotidyl,transferase,dUTP,nick,end,labeling,respectively,results,showed,significantly,decreased,improved,compared,however,reversed,these,Compared,cytosolic,mitochondrial,These,data,indicate,upregulation,reduce,release,inhibiting,pathway,reducing,activation,preventing,which,might,All,experiments,approved,Animal,Ethics,Committee,First,Affiliated,Hospital,Chongqing,Medical,University,China,December,approval,No
AB值:
0.421043
相似文献
Spirulina platensis aqueous extracts ameliorate colonic mucosal damage and modulate gut microbiota disorder in mice with ulcerative colitis by inhibiting inflammation and oxidative stress
Jian WANG;Liqian SU;Lun ZHANG;Jiali ZENG;Qingru CHEN;Rui DENG;Ziyan WANG;Weidong KUANG;Xiaobao JIN;Shuiqing GUI;Yinghua XU;Xuemei LU-Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances,School of Life Science and Biopharmaceutics,Guangdong Pharmaceutical University,Guangzhou 510006,China;School of Pharmacy,Guangdong Pharmaceutical University,Guangzhou 510006,China;Intensive Care Unit,Shenzhen Second People's Hospital,the First Affiliated Hospital of Shenzhen University,Shenzhen 518031,China;Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products,National Institutes for Food and Drug Control,Beijing 102629,China
CircRNA.0007127 triggers apoptosis through the miR-513a-5p/CASP8 axis in K-562 cells
Xiajing LI;Yiyu ZHANG;Ning WANG;Zhaohu YUAN;Xiaojie CHEN;Qicong CHEN;Hui DENG;Xinxin TONG;Honglin CHEN;Yuyou DUAN;Yarning WEI-School of Medicine,South China University of Technology,Guangzhou 510000,China;Department of Blood Transfusion,Shenzhen Longhua Central Hospital,Shenzhen 518000,China;Laboratory of Stem Cells and Translational Medicine,Institutes for Life Sciences,School of Medicine,South China University of Technology,Guangzhou 510000,China;School of Biomedical Sciences and Engineering,Guangzhou International Campus,South China University of Technology,Guangzhou 510000,China;Department of Blood Transfusion,the Second Affiliation Hospital of South China University of Technology,Guangzhou 510000,China;Guangdong Engineering Research Center of Precise Transfusion,Guangzhou 510000,China
Autophagy, not apoptosis, plays a role in lumen formation of eccrine gland organoids
Du Lijie;Zhang Lei;Zhao Junhong;Chen Zixiu;Liu Xiang;Cao Manxiu;You Lei;Zhang Yonghong;Fu Xiaobing;Li Haihong-Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China;Hubei Clinical Medical Research Center of Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China;Mental Health Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China;School of Basic Medicine, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei 442000, China;Wound Healing and Cell Biology Laboratory, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing 100048, China
Neuronal chemokine-like-factor 1(CKLF1)up-regulation promotes M1 polarization of microglia in rat brain after stroke
Xin Zhou;Ya-ni Zhang;Fang-fang Li;Zhao Zhang;Li-yuan Cui;Hong-yuan He;Xu Yan;Wen-bin He;Hong-shuo Sun;Zhong-ping Feng;Shi-feng Chu;Nai-hong Chen-State Key Laboratory of Bioactive Substances and Functions of Natural Medicines,Institute of Materia Medica and Neuroscience Center,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050,China;Institute of Clinical Pharmacology&Science and Technology Innovation Center,Guangzhou University of Chinese Medicine,Guangzhou 510405,China;Tianjin University of Tradition Chinese Medicine,Tianjin 301617,China;Shanxi Key Laboratory of Chinese Medicine Encephalopathy,Shanxi University of Chinese Medicine,Jinzhong 030619,China;Department of Physiology,Faculty of Medicine,University of Toronto,Toronto,ON,Canada
Asiatic acid alleviates ischemic myocardial injury in mice by modulating mitophagy-and glycophagy-based energy metabolism
Fan Qiu;Yi Yuan;Wei Luo;Yan-shan Gong;Zhong-ming Zhang;Zhong-min Liu;Ling Gao-Translational Medical Center for Stem Cell Therapy&Institute for Regenerative Medicine,Shanghai East Hospital,Tongji University School of Medicine,Shanghai 200123,China;Department of Cardiovascular and Thoracic Surgery,Shanghai East Hospital,Tongji University School of Medicine,Shanghai 200120,China;Department of Cardiovascular and Thoracic Surgery,Affiliated Hospital of Xuzhou Medical University,Xuzhou 221006,China;Shanghai Institute of Stem Cell Research and Clinical translation,Shanghai East Hospital,Tongji University,Shanghai 200120,China;Shanghai Engineering Research Center for Stem Cell Clinical Treatment,Shanghai 200123,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。