典型文献
Hayward Quasilocal Energy of Tori
文献摘要:
In this paper,the authors show that one cannot dream of the positivity of the Hayward energy in the general situation.They consider a scenario of a spherically symmet-ric constant density star matched to the Schwarzschild solution,representing momentarily static initial data.It is proved that any topological tori within the star,distorted or not,have strictly positive Hayward energy.Surprisingly we find analytic examples of'thin'tori with negative Hayward energy in the outer neighborhood of the Schwarzschild horizon.These tori are swept out by rotating the standard round circles in the static coordinates but they are distorted in the isotropic coordinates.Numerical results also indicate that there exist horizontally dragged tori with strictly negative Hayward energy in the region between the boundary of the star and the Schwarzschild horizon.
文献关键词:
中图分类号:
作者姓名:
Xiaokai HE;Naqing XIE
作者机构:
School of Mathematics and Statistics,Hunan First Normal University,Changsha 410205,China;School of Mathematical Sciences,Fudan University,Shanghai 200433,China
文献出处:
引用格式:
[1]Xiaokai HE;Naqing XIE-.Hayward Quasilocal Energy of Tori)[J].数学年刊B辑(英文版),2022(05):773-784
A类:
Quasilocal,Tori,momentarily,dragged
B类:
Hayward,Energy,In,this,paper,authors,show,that,one,cannot,dream,positivity,energy,general,situation,They,consider,scenario,spherically,symmet,constant,density,star,matched,Schwarzschild,solution,representing,static,initial,data,It,proved,any,topological,tori,within,distorted,have,strictly,positive,Surprisingly,find,analytic,examples,negative,outer,neighborhood,These,are,swept,by,rotating,standard,round,circles,coordinates,but,they,isotropic,Numerical,results,also,indicate,there,exist,horizontally,region,between,boundary
AB值:
0.546348
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。