首站-论文投稿智能助手
典型文献
A SUBSOLUTION THEOREM FOR THE MONGE-AMP(E)RE EQUATION OVER AN ALMOST HERMITIAN MANIFOLD
文献摘要:
Let Ω ? M be a bounded domain with a smooth boundary ?Ω,where(M,J,g)is a compact,almost Hermitian manifold.The main result of this paper is to consider the Dirichlet problem for a complex Monge-Ampère equation on Q.Under the existence of a C2-smooth strictly J-plurisubharmonic(J-psh for short)subsolution,we can solve this Dirichlet problem.Our method is based on the properties of subsolutions which have been widely used for fully nonlinear elliptic equations over Hermitian manifolds.
文献关键词:
作者姓名:
Jiaogen ZHANG
作者机构:
School of Mathematical Sciences,University of Science and Technology of China,Hefei 230026,China
引用格式:
[1]Jiaogen ZHANG-.A SUBSOLUTION THEOREM FOR THE MONGE-AMP(E)RE EQUATION OVER AN ALMOST HERMITIAN MANIFOLD)[J].数学物理学报(英文版),2022(05):2040-2062
A类:
SUBSOLUTION,THEOREM,MONGE,EQUATION,ALMOST,HERMITIAN,MANIFOLD,plurisubharmonic,psh,subsolutions
B类:
FOR,AMP,OVER,Let,bounded,domain,smooth,boundary,where,compact,almost,Hermitian,result,this,paper,consider,Dirichlet,problem,complex,Monge,Amp,Under,existence,C2,strictly,short,we,can,solve,Our,method,properties,which,have,been,widely,used,fully,nonlinear,elliptic,equations,over,manifolds
AB值:
0.493153
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。