典型文献
LARGE TIME BEHAVIOR OF THE 1D ISENTROPIC NAVIER-STOKES-POISSON SYSTEM
文献摘要:
The initial value problem(IVP)for the one-dimensional isentropic compressible Navier-Stokes-Poisson(CNSP)system is considered in this paper.For the variables,the electric field and the velocity,under the Lagrange coordinate,we establish the global existence and uniqueness of the classical solutions to this IVP problem.Then we prove by the method of complex analysis,that the solutions to this system converge to those of the corresponding linearized system in the L2 norm as time tends to infinity.In addition,we show,using Green's function,that the solutions to this system are close to a diffusion profile,pointwisely,as time goes to infinity.
文献关键词:
中图分类号:
作者姓名:
Qingyou HE;Jiawei SUN
作者机构:
Department of Mathematics,Capital Normal University,Beijing 100048,China;Department of Mathematics,Shandong Normal University,Jinan 250014,China
文献出处:
引用格式:
[1]Qingyou HE;Jiawei SUN-.LARGE TIME BEHAVIOR OF THE 1D ISENTROPIC NAVIER-STOKES-POISSON SYSTEM)[J].数学物理学报(英文版),2022(05):1843-1874
A类:
LARGE,BEHAVIOR,ISENTROPIC,POISSON,CNSP,pointwisely
B类:
TIME,OF,THE,1D,NAVIER,STOKES,SYSTEM,initial,value,problem,IVP,one,dimensional,isentropic,compressible,Navier,Stokes,Poisson,system,considered,this,paper,For,variables,electric,field,velocity,under,Lagrange,coordinate,we,establish,global,existence,uniqueness,classical,solutions,Then,prove,by,method,complex,analysis,that,converge,those,corresponding,linearized,L2,norm,tends,infinity,In,addition,show,using,Green,function,are,close,diffusion,profile,goes
AB值:
0.609023
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。