典型文献
TWO REGULARIZATION METHODS FOR IDENTIFYING THE SOURCE TERM PROBLEM ON THE TIME-FRACTIONAL DIFFUSION EQUATION WITH A HYPER-BESSEL OPERATOR
文献摘要:
In this paper,we consider the inverse problem for identifying the source term of the time-fractional equation with a hyper-Bessel operator.First,we prove that this inverse problem is ill-posed,and give the conditional stability.Then,we give the optimal error bound for this inverse problem.Next,we use the fractional Tikhonov regularization method and the fractional Landweber iterative regularization method to restore the stability of the ill-posed problem,and give corresponding error estimates under different regularization parameter selection rules.Finally,we verify the effectiveness of the method through numerical examples.
文献关键词:
中图分类号:
作者姓名:
Fan YANG;Qiaoxi SUN;Xiaoxiao LI
作者机构:
Department of Mathematics,Lanzhou University of Technology,Lanzhou 730000,China
文献出处:
引用格式:
[1]Fan YANG;Qiaoxi SUN;Xiaoxiao LI-.TWO REGULARIZATION METHODS FOR IDENTIFYING THE SOURCE TERM PROBLEM ON THE TIME-FRACTIONAL DIFFUSION EQUATION WITH A HYPER-BESSEL OPERATOR)[J].数学物理学报(英文版),2022(04):1485-1518
A类:
REGULARIZATION,IDENTIFYING,SOURCE,PROBLEM,FRACTIONAL,DIFFUSION,EQUATION,HYPER,BESSEL,OPERATOR
B类:
TWO,METHODS,FOR,THE,TERM,TIME,WITH,In,this,paper,consider,inverse,problem,identifying,source,term,fractional,equation,hyper,Bessel,operator,First,prove,that,ill,posed,give,conditional,stability,Then,optimal,error,bound,Next,use,Tikhonov,regularization,method,Landweber,iterative,restore,corresponding,estimates,under,different,parameter,selection,rules,Finally,verify,effectiveness,through,numerical,examples
AB值:
0.50642
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。