典型文献
A NEW PROOF OF GAFFNEY'S INEQUALITY FOR DIFFERENTIAL FORMS ON MANIFOLDS-WITH-BOUNDARY:THE VARIATIONAL APPROACH à LA KOZONO-YANAGISAWA
文献摘要:
Let(M,g0)be a compact Riemannian manifold-with-boundary.We present a new proof of the classical Gaffney inequality for differential forms in boundary value spaces over M,via a variational approach à la Kozono-Yanagisawa[Lr-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains,Indiana Univ.Math.J.58(2009),1853-1920],combined with global computations based on the Bochner technique.
文献关键词:
中图分类号:
作者姓名:
Siran LI
作者机构:
School of Mathematical Sciences,IMA-Shanghai&Key Laboratory of Scientific and Engineering Computing(Ministry of Education),Shanghai Jiao Tong University,Shanghai 200240,China
文献出处:
引用格式:
[1]Siran LI-.A NEW PROOF OF GAFFNEY'S INEQUALITY FOR DIFFERENTIAL FORMS ON MANIFOLDS-WITH-BOUNDARY:THE VARIATIONAL APPROACH à LA KOZONO-YANAGISAWA)[J].数学物理学报(英文版),2022(04):1427-1452
A类:
PROOF,GAFFNEY,INEQUALITY,DIFFERENTIAL,FORMS,MANIFOLDS,BOUNDARY,VARIATIONAL,APPROACH,KOZONO,YANAGISAWA,Gaffney,Kozono,Yanagisawa,Indiana
B类:
NEW,WITH,THE,LA,Let,g0,be,compact,Riemannian,manifold,boundary,present,new,proof,classical,inequality,differential,forms,value,spaces,over,via,variational,approach,Lr,vector,fields,Helmholtz,Weyl,decomposition,bounded,domains,Univ,Math,combined,global,computations,Bochner,technique
AB值:
0.492505
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。