典型文献
MAXIMAL L1-REGULARITY OF GENERATORS FOR BOUNDED ANALYTIC SEMIGROUPS IN BANACH SPACES
文献摘要:
In this paper,we prove that the generator of any bounded analytic semigroup in(θ,1)-type real interpolation of its domain and underlying Banach space has maximal L1-regularity,using a duality argument combined with the result of maximal continuous regularity.As an application,we consider maximal L1-regularity of the Dirichlet-Laplacian and the Stokes operator in inhomogeneous Bsq,i-type Besov spaces on domains of Rn,n≥2.
文献关键词:
中图分类号:
作者姓名:
Myong-Hwan RI;Reinhard FARWIG
作者机构:
Institute of Mathematics,State Academy of Sciences,Pyongyang,DPR Korea;Department of Mathematics,Darmstadt University of Technology,Germany
文献出处:
引用格式:
[1]Myong-Hwan RI;Reinhard FARWIG-.MAXIMAL L1-REGULARITY OF GENERATORS FOR BOUNDED ANALYTIC SEMIGROUPS IN BANACH SPACES)[J].数学物理学报(英文版),2022(04):1261-1272
A类:
MAXIMAL,REGULARITY,GENERATORS,BOUNDED,ANALYTIC,SEMIGROUPS,BANACH,SPACES,Bsq
B类:
L1,OF,FOR,IN,In,this,paper,we,prove,that,generator,any,bounded,analytic,semigroup,type,real,interpolation,its,underlying,Banach,has,maximal,regularity,using,duality,argument,combined,result,continuous,application,consider,Dirichlet,Laplacian,Stokes,operator,inhomogeneous,Besov,spaces,domains,Rn
AB值:
0.548822
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。