首站-论文投稿智能助手
典型文献
Secure Bipartite Tracking Control for Linear Leader-Following Multiagent Systems Under Denial-of-Service Attacks
文献摘要:
Dear editor, This letter puts forward a secure feedback control scheme to bipartite tracking consensus for a set of generic linear autonomous agents subject to aperiodic and unknown denial-of-service(DoS)attacks.In contrast to the DoS attack model that disables all transmission channels simultaneously,we are concerned with a general DoS attack model with independent attacks over each transmission channel.Such malicious attacks not only destroy the connectivity of underlying network,but also induce the dynamic transmission of reachable information.
文献关键词:
作者姓名:
Lulu Chen;Lei Shi;Quan Zhou;Hanmin Sheng;Yuhua Cheng
作者机构:
School of Automation Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China;China Railway Rolling Stock Corporation,QINGDAO SIFANG CO.,LTD.,Qingdao 266311
引用格式:
[1]Lulu Chen;Lei Shi;Quan Zhou;Hanmin Sheng;Yuhua Cheng-.Secure Bipartite Tracking Control for Linear Leader-Following Multiagent Systems Under Denial-of-Service Attacks)[J].自动化学报(英文版),2022(08):1512-1515
A类:
Multiagent
B类:
Secure,Bipartite,Tracking,Control,Linear,Leader,Following,Systems,Under,Denial,Service,Attacks,Dear,editor, This,letter,puts,forward,secure,feedback,control,scheme,bipartite,tracking,consensus,set,generic,linear,autonomous,agents,subject,aperiodic,unknown,denial,service,DoS,attacks,In,contrast,model,that,disables,all,transmission,channels,simultaneously,we,are,concerned,general,independent,over,Such,malicious,not,only,destroy,connectivity,underlying,network,but,also,induce,dynamic,reachable,information
AB值:
0.780806
相似文献
Denoised Internal Models:A Brain-inspired Autoencoder Against Adversarial Attacks
Kai-Yuan Liu;Xing-Yu Li;Yu-Rui Lai;Hang Su;Jia-Chen Wang;Chun-Xu Guo;Hong Xie;Ji-Song Guan;Yi Zhou-School of Life Sciences and Technology,ShanghaiTech University,Shanghai 201210,China;School of Life Sciences,Tsinghua University,Beijing 100084,China;Shanghai Center for Brain Science and Brain-inspired Technology,Shanghai 201602,China;Institute of Photonic Chips,University of Shanghai for Science and Technology,Shanghai 200093,China;Centre for Artificial-intelligence Nanophotonics,School of Optical-electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;National Engineering Laboratory for Brain-inspired Intelligence Technology and Application,School of Information Science and Technology,University of Science and Technology of China,Hefei 230026,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。