首站-论文投稿智能助手
典型文献
Configurational information entropy analysis of fragment mass cross distributions to determine the neutron skin thickness of projectile nuclei
文献摘要:
Configurational information entropy(CIE)analysis has been shown to be applicable for determining the neutron skin thickness(δnp)of neutron-rich nuclei from fragment production in projectile fragmentation reactions.The BNN+FRACS machine learning model was adopted to predict the fragment mass cross-sections(σA)of the projectile fragmentation reactions induced by calcium isotopes from 36Ca to 56Ca on a 9Be target at 140 MeV/u.The fast Fourier transform was adopted to decompose the possible information compositions in σA distributions and determine the quantity of CIE(SA[f]).It was found that the range of fragments significantly influ-ences the quantity of SA f],which results in different trends of SA[f]~δnp correlation.The linear SA[f]~δnp correla-tion in a previous study[Nucl.Sci.Tech.33,6(2022)]could be reproduced using fragments with relatively large mass fragments,which verifies that SA f]determined from fragment σA is sensitive to the neutron skin thickness of neutron-rich isotopes.
文献关键词:
作者姓名:
Hui-Ling Wei;Xun Zhu;Chen Yuan
作者机构:
College of Physics,Henan Normal University,Xinxiang 453007,China
引用格式:
[1]Hui-Ling Wei;Xun Zhu;Chen Yuan-.Configurational information entropy analysis of fragment mass cross distributions to determine the neutron skin thickness of projectile nuclei)[J].核技术(英文版),2022(09):21-27
A类:
Configurational,BNN+FRACS,36Ca,56Ca,Nucl
B类:
information,entropy,analysis,mass,cross,distributions,neutron,skin,thickness,projectile,nuclei,CIE,has,been,shown,applicable,determining,np,rich,from,production,fragmentation,reactions,machine,learning,model,was,adopted,predict,sections,induced,by,calcium,isotopes,9Be,target,MeV,fast,Fourier,transform,decompose,possible,compositions,quantity,SA,It,found,that,range,fragments,significantly,influ,ences,which,results,different,trends,correlation,linear,previous,study,Sci,Tech,could,reproduced,using,relatively,large,verifies,determined,sensitive
AB值:
0.463952
相似文献
New experimental measurement of natSe(n,γ)cross section between 1 eV to 1 keV at the CSNS Back-n facility
Xin-Rong Hu;Long-Xiang Liu;Wei Jiang;Jie Ren;Gong-Tao Fan;Hong-Wei Wang;Xi-Guang Cao;Long-Long Song;Ying-Du Liu;Yue Zhang;Xin-Xiang Li;Zi-Rui Hao;Pan Kuang;Xiao-He Wang;Ji-Feng Hu;Bing Jiang;De-Xin Wang;Suyalatu Zhang;Zhen-Dong An;Yu-Ting Wang;Chun-Wang Ma;Jian-Jun He;Jun Su;Li-Yong Zhang;Yu-Xuan Yang;Sheng Jin;Kai-Jie Chen-Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China;University of Chinese Academy of Sciences,Beijing 100049,China;Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China;Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China;Spallation Neutron Source Science Center,Dongguan 523803,China;Key Laboratory of Nuclear Data,China Institute of Atomic Energy,Beijing 102413,China;Xiangtan University,Xiangtan 411105,China;Institute of Nuclear Physics,Inner Mongolia University for the Nationalities,Tongliao 028000,China;Sun Yat-sen University,Zhuhai 510275,China;Henan Normal University,Xinxiang 453007,China;Beijing Normal University,Beijing 100875,China;School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450052,China;ShanghaiTech University,Shanghai 200120,China
Mapping high resolution National Soil Information Grids of China
Feng Liu;Huayong Wu;Yuguo Zhao;Decheng Li;Jin-Ling Yang;Xiaodong Song;Zhou Shi;A-Xing Zhu;Gan-Lin Zhang-State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China;University of Chinese Academy of Sciences,Beijing 100049,China;Institute of Agricultural Remote Sensing and Information Technology Application,College of Environmental and Resource Sciences,Zhejiang University,Hangzhou 310058,China;Key Laboratory of Virtual Geographic Environment of Ministry of Education,Nanjing Normal University,Nanjing 210023,China;State Key Laboratory of Resources and Environmental Information System,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China;Key Laboratory of Watershed Geographic Science,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences,Nanjing 210008,China
Unified neutron star EOSs and neutron star structures in RMF models
Cheng-Jun Xia;Toshiki Maruyama;Ang Li;Bao Yuan Sun;Wen-Hui Long;Ying-Xun Zhang-Center for Gravitation and Cosmology,College of Physical Science and Technology,Yangzhou University,Yangzhou 225009,China;School of Information Science and Engineering,NingboTech University,Ningbo 315100,China;Advanced Science Research Center,Japan Atomic Energy Agency,Shirakata 2-4,Tokai,Ibaraki 319-1195,Japan;Department of Astronomy,Xiamen University,Xiamen 361005,China;School of Nuclear Science and Technology,Lanzhou University,Lanzhou 730000,China;Frontiers Science Center for Rare Isotopes,Lanzhou University,Lanzhou 730000,China;China Institute of Atomic Energy,Beijing 102413,China;Guangxi Key Laboratory Breeding Base of Nuclear Physics and Technology,Guilin 541004,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。