首站-论文投稿智能助手
典型文献
A review of thermal rectification in solid-state devices
文献摘要:
Thermal rectification,or the asymmetric transport of heat along a structure,has recently been investigated as a poten-tial solution to the thermal management issues that accompany the miniaturization of electronic devices.Applications of this concept in thermal logic circuits analogous to existing electronics-based processor logic have also been proposed.This review highlights some of the techniques that have been recently investigated for their potential to induce asymmetric thermal con-ductivity in solid-state structures that are composed of materials of interest to the electronics industry.These rectification ap-proaches are compared in terms of their quantitative performance,as well as the range of practical applications that they would be best suited to.Techniques applicable to a range of length scales,from the continuum regime to quantum dots,are dis-cussed,and where available,experimental findings that build upon numerical simulations or analytical predictions are also high-lighted.
文献关键词:
作者姓名:
Faraz Kaiser Malik;Kristel Fobelets
作者机构:
Department of Electrical and Electronic Engineering,Imperial College London,SW7 2BT,United Kingdom
引用格式:
[1]Faraz Kaiser Malik;Kristel Fobelets-.A review of thermal rectification in solid-state devices)[J].半导体学报(英文版),2022(10):23-40
A类:
B类:
review,thermal,rectification,solid,state,devices,Thermal,asymmetric,transport,heat,along,has,recently,been,investigated,solution,management,issues,that,accompany,miniaturization,Applications,this,concept,logic,circuits,analogous,existing,electronics,processor,have,also,proposed,This,highlights,some,techniques,their,potential,induce,ductivity,structures,composed,materials,interest,industry,These,proaches,compared,terms,quantitative,performance,well,range,practical,applications,they,would,best,suited,Techniques,applicable,length,scales,from,continuum,regime,quantum,dots,dis,cussed,where,available,experimental,findings,build,upon,numerical,simulations,analytical,predictions,lighted
AB值:
0.620567
相似文献
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques
Guannan Qian;Junyang Wang;Hong Li;Zi-Feng Ma;Piero Pianetta;Linsen Li;Xiqian Yu;Yijin Liu-Stanford Synchrotron Radiation Lightsource,SLAC National Accelerator Laboratory,Menlo Park,CA 94025,USA;Department of Chemical Engineering,Shanghai Electrochemical Energy Device Research Center(SEED),School of Chemistry and Chemical Engineering,Frontiers Science Center for Transformative Molecules,Shanghai Jiao Tong University,Shanghai 200240,China;Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;Shanghai Jiao Tong University Sichuan Research Institute,Chengdu 610213,China
Zeolitic imidazolate framework-67 derived Al-Co-S hierarchical sheets bridged by nitrogen-doped graphene:Incorporation of PANI derived carbon nanorods for solid-state asymmetric supercapacitors
Emad S.Goda;Bidhan Pandit;Sang Eun Hong;Bal Sydulu Singu;Seong K.Kim;Essam B.Moustafa;Kuk Ro Yoon-Organic Nanomaterials Lab,Department of Chemistry,Hannam University,Daejeon 34054,Republic of Korea;Gas Analysis and Fire Safety Laboratory,Chemistry Division,National Institute for Standards,136,Giza 12211,Egypt;Department of Materials Science and Engineering and Chemical Engineering,Universidad Carlos Ⅲ de Madrid,Avenida de La Universidad 30,28911 Leganés,Madrid,Spain;Department of Chemical and Biomolecular Engineering,Yonsei University,Seoul 03722,Republic of Korea;Department of Chemical Engineering,Hannam University,1646 Yuseongdae-ro,Yuseong-gu,Daejeon 34054,Republic of Korea;Mechanical Engineering Department,Faculty of Engineering,King Abdulaziz University,P.O.Box 80204,Jeddah 22254,Saudi Arabia
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。