首站-论文投稿智能助手
典型文献
Modulating properties by light ion irradiation:From novel functional materials to semiconductor power devices
文献摘要:
In this review,the application of light ion irradiation is discussed for tailoring novel functional materials and for im-proving the performance in SiC or Si based electrical power devices.The deep traps and electronic disorder produced by light ion irradiation can modify the electrical,magnetic,and optical properties of films(e.g.,dilute ferromagnetic semiconductors and topological materials).Additionally,benefiting from the high reproducibility,precise manipulation of functional depth and density of defects,as well as the flexible patternability,the helium or proton ion irradiation has been successfully employed in improving the dynamic performance of SiC and Si based PiN diode power devices by reducing their majority carrier lifetime,al-though the static performance is sacrificed due to deep level traps.Such a trade-off has been regarded as the key point to com-promise the static and dynamic performances of power devices.As a result,herein the light ion irradiation is highlighted in both exploring new physics and optimizing the performance in functional materials and electrical devices.
文献关键词:
作者姓名:
Ye Yuan;Shengqiang Zhou;Xinqiang Wang
作者机构:
Songshan Lake Materials Laboratory,Dongguan 523808,China;Institute of Ion Beam Physics and Material Research,Helmholtz-Zentrum Dresden-Rossendorf,Dresden 01328,Germany;Dongguan Institute of Optoelectronics,Peking University,Dongguan 523808,China
引用格式:
[1]Ye Yuan;Shengqiang Zhou;Xinqiang Wang-.Modulating properties by light ion irradiation:From novel functional materials to semiconductor power devices)[J].半导体学报(英文版),2022(06):25-36
A类:
patternability,PiN
B类:
Modulating,properties,by,irradiation,From,novel,functional,materials,power,devices,In,this,review,application,discussed,tailoring,SiC,electrical,deep,traps,electronic,disorder,produced,can,modify,optical,films,dilute,ferromagnetic,semiconductors,topological,Additionally,benefiting,from,reproducibility,precise,manipulation,depth,density,defects,well,flexible,helium,proton,has,been,successfully,employed,improving,dynamic,diode,reducing,their,majority,carrier,lifetime,though,static,sacrificed,due,level,Such,trade,off,regarded,key,point,com,promise,performances,result,herein,highlighted,both,exploring,new,physics,optimizing
AB值:
0.517444
相似文献
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization
Xia Cai;Fengcai Liu;Anran Yu;Jiajun Qin;Mohammad Hatamvand;Irfan Ahmed;Jiayan Luo;Yiming Zhang;Hao Zhang;Yiqiang Zhan-School of Information Science and Technology,Fudan University,Shanghai 200433,China;College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China;Center of Micro-Nano System,Fudan University,Shanghai 200433,China;Department of Physics,Chemistry and Biology,Link?ping University,Link?ping SE-58183,Sweden;Key Laboratory of Micro and Nano Photonic Structures and Department of Optical Science and Engineering,Fudan University,Shanghai 200433,China;Yiwu Research Institute of Fudan University,Chengbei Road,Yiwu City,Zhejiang 322000,China
Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization
Xia Cai;Fengcai Liu;Anran Yu;Jiajun Qin;Mohammad Hatamvand;Irfan Ahmed;Jiayan Luo;Yiming Zhang;Hao Zhang;Yiqiang Zhan-School of Information Science and Technology,Fudan University,Shanghai 200433,China;College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China;Center of Micro-Nano System,Fudan University,Shanghai 200433,China;Department of Physics,Chemistry and Biology,Link?ping University,Link?ping SE-58183,Sweden;Key Laboratory of Micro and Nano Photonic Structures and Department of Optical Science and Engineering,Fudan University,Shanghai 200433,China;Yiwu Research Institute of Fudan University,Chengbei Road,Yiwu City,Zhejiang 322000,China
Zeolitic imidazolate framework-67 derived Al-Co-S hierarchical sheets bridged by nitrogen-doped graphene:Incorporation of PANI derived carbon nanorods for solid-state asymmetric supercapacitors
Emad S.Goda;Bidhan Pandit;Sang Eun Hong;Bal Sydulu Singu;Seong K.Kim;Essam B.Moustafa;Kuk Ro Yoon-Organic Nanomaterials Lab,Department of Chemistry,Hannam University,Daejeon 34054,Republic of Korea;Gas Analysis and Fire Safety Laboratory,Chemistry Division,National Institute for Standards,136,Giza 12211,Egypt;Department of Materials Science and Engineering and Chemical Engineering,Universidad Carlos Ⅲ de Madrid,Avenida de La Universidad 30,28911 Leganés,Madrid,Spain;Department of Chemical and Biomolecular Engineering,Yonsei University,Seoul 03722,Republic of Korea;Department of Chemical Engineering,Hannam University,1646 Yuseongdae-ro,Yuseong-gu,Daejeon 34054,Republic of Korea;Mechanical Engineering Department,Faculty of Engineering,King Abdulaziz University,P.O.Box 80204,Jeddah 22254,Saudi Arabia
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。