首站-论文投稿智能助手
典型文献
Tunable crystal structure of Cu-Zn-Sn-S nanocrystals for improving photocatalytic hydrogen evolution enabled by copper element regulation
文献摘要:
Hydrogen energy is a powerful and efficient energy resource,which can be produced by photocatalytic water split-ting.Among the photocatalysis,multinary copper-based chalcogenide semiconductor nanocrystals exhibit great potential due to their tunable crystal structures,adjustable optical band gap,eco-friendly,and abundant resources.In this paper,Cu-Zn-Sn-S(CZTS)nanocrystals with different Cu content have been synthesized by using the one-pot method.By regulating the surface ligands,the reaction temperature,and the Cu content,kesterite and hexagonal wurtzite CZTS nanocrystals were ob-tained.The critical factors for the controllable transition between two phases were discussed.Subsequently,a series of quatern-ary CZTS nanocrystals with different Cu content were used for photocatalytic hydrogen evolution.And their band gap,energy level structure,and charge transfer ability were compared comprehensively.As a result,the pure hexagonal wurtzite CZTS nano-crystals have exhibited an improved photocatalytic hydrogen evolution activity.
文献关键词:
作者姓名:
Zhe Yin;Min Hu;Jun Liu;Hao Fu;Zhijie Wang;Aiwei Tang
作者机构:
Key Laboratory of Luminescence and Optical Information,Ministry of Education,School of Science,Beijing Jiaotong University,Beijing 100044,China;Key Laboratory of Semiconductor Materials Science,institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China;Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China;College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China
引用格式:
[1]Zhe Yin;Min Hu;Jun Liu;Hao Fu;Zhijie Wang;Aiwei Tang-.Tunable crystal structure of Cu-Zn-Sn-S nanocrystals for improving photocatalytic hydrogen evolution enabled by copper element regulation)[J].半导体学报(英文版),2022(03):67-72
A类:
multinary,quatern
B类:
Tunable,Sn,nanocrystals,improving,photocatalytic,hydrogen,evolution,enabled,by,copper,element,regulation,Hydrogen,energy,powerful,efficient,which,can,produced,water,split,Among,photocatalysis,chalcogenide,semiconductor,great,potential,due,their,tunable,structures,adjustable,optical,band,gap,eco,friendly,abundant,resources,In,this,paper,CZTS,different,content,have,been,synthesized,using,one,method,By,regulating,surface,ligands,reaction,temperature,kesterite,hexagonal,wurtzite,were,ob,tained,critical,factors,controllable,transition,between,two,phases,discussed,Subsequently,series,used,And,level,charge,transfer,ability,compared,comprehensively,result,pure,exhibited,improved,activity
AB值:
0.556859
相似文献
Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution
Zhangyu Gu;Yisong Fan;Yixing Ye;Yunyu Cai;Jun Liu;Shouliang Wu;Pengfei Li;Junhua Hu;Changhao Liang;Yao Ma-Henan Institute of Advanced Technology,Zhengzhou University,Zhengzhou 450001,China;Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology,Institute of Solid State Physics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China;Anhui Institute of Optics and Fine Mechanics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China;School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China;University of Science and Technology of China,Hefei 230026,China;Technology Center,Benecke Changshun Auto Trim(Zhangjiagang)Co.,Ltd.,No.8,Changyang Rd.,Nansha,Jingang Town,Zhangjiagang 215632,China
Enhanced photocatalytic degradation and H2 evolution performance of N-CDs/S-C3N4 S-scheme heterojunction constructed by π-π conjugate self-assembly
Xibao Li;Qiuning Luo;Lu Han;Fang Deng;Ya Yang;Fan Dong-School of Materials Science and Engineering,Nanchang Hangkong University,Nanchang 330063.China;Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle,Nanchang Hangkong University,Nanchang 330063,China;School of Materials and Metallurgy,University of Science and Technology Liaoning,Anshan 114051,China;CAS Center for Excellence in Nanoscience,Beijing Institute of Nanoenergy and Nanosystems,Chinese Academy of Sciences,Beijing 101400,China;Institute of Fundamental and Frontier Sciences.University of Electronic Science and Technology of China.Chengdu 611731.China
Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(Ⅵ):Performance,toxicity evaluation and mechanism insight
Shijie Li;Mingjie Cai;Chunchun Wang;Yanping Liu;Neng Li;Peng Zhang;Xin Li-Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province,National Engineering Research Center for Marine Aquaculture,College of Marine Science and Technology,Zhejiang Ocean University,Zhoushan 316022,China;Institute of Innovation&Application,Zhejiang Ocean University,Zhoushan 316022,China;State Key Laboratory of Silicate Materials for Architectures,Wuhan University of Technology,Wuhan 430070,China;State Center for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China;Institute of Biomass Engineering,Key Laboratory of Energy Plants Resource and Utilization,Ministry of Agriculture and Rural Affairs,South China Agricultural University,Guangzhou 510642,China
Role of transition metal oxides in g-C3N4-based heterojunctions for photocatalysis and supercapacitors
Liqi Bai;Hongwei Huang;Shixin Yu;Deyang Zhang;Haitao Huang;Yihe Zhang-Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes,School of Materials Science and Technology,China University of Geosciences,Beijing 100083,China;Department of Physics & Department of Materials Science and Engineering,City University of Hong Kong,Tat Chee Avenue,Kowloon,Hong Kong,China;Key laboratory of Microelectronics and Energy of Henan Province,Henan Joint International Research Laboratory of New Energy Storage Technology,School of Physics and Electronic Engineering,Xinyang Normal University,Xinyang 464000,Henan,China;Department of Applied Physics and Research Institute for Smart Energy,The Hong Kong Polytechnic University,Hung Hom,Kowloon,Hong Kong,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。