首站-论文投稿智能助手
典型文献
Mottness,phase string,and high-Tc superconductivity
文献摘要:
It is a great discovery in physics of the twentieth century that the elementary particles in nature are dictated by gauge forces,characterized by a nonintegrable phase factor that an elementary particle of charge q acquires from A to B points:Pexp(iq/hc ∫BA Aμdxμ),where Aμ is the gauge potential and P stands for path ordering.In a many-body system of strongly correlated electrons,if the so-called Mott gap is opened up by interaction,the corresponding Hilbert space will be fundamentally changed.A novel nonintegrable phase factor known as phase-string will appear and replace the conventional Fermi statistics to dictate the low-lying physics.Protected by the Mott gap,which is clearly identified in the high-Tc cuprate with a magnitude>1.5 eV,such a singular phase factor can enforce a fractionalization of the electrons,leading to a dual world of exotic elementary particles with a topological gauge structure.A non-Fermi-liquid"parent"state will emerge,in which the gapless Landau quasiparticle is only partially robust around the so-called Fermi arc regions,while the main dynamics are dominated by two types of gapped spinons.Antiferromagnetism,superconductivity,and a Fermi liquid with full Fermi surface can be regarded as the low-temperature instabilities of this new parent state.Both numerics and experiments provide direct evidence for such an emergent physics of the Mottness,which lies in the core of a high-Tc superconducting mechanism.
文献关键词:
作者姓名:
Jing-Yu Zhao;Zheng-Yu Weng
作者机构:
Institute for Advanced Study,Tsinghua University,Beijing 100084,China
引用格式:
[1]Jing-Yu Zhao;Zheng-Yu Weng-.Mottness,phase string,and high-Tc superconductivity)[J].中国物理B(英文版),2022(08):40-50
A类:
Mottness,nonintegrable,Pexp,fractionalization,quasiparticle,spinons,Antiferromagnetism,numerics
B类:
phase,string,high,Tc,superconductivity,It,great,discovery,physics,twentieth,century,that,elementary,particles,nature,dictated,by,gauge,forces,characterized,charge,acquires,from,points,hc,BA,dx,where,potential,stands,path,ordering,In,many,body,system,strongly,correlated,electrons,so,called,opened,interaction,corresponding,Hilbert,space,will,fundamentally,changed,novel,known,appear,replace,conventional,Fermi,statistics,low,lying,Protected,which,clearly,identified,cuprate,magnitude,eV,such,singular,can,enforce,leading,dual,world,exotic,topological,structure,liquid,parent,state,gapless,Landau,only,partially,robust,around,arc,regions,while,main,dynamics,dominated,two,types,gapped,full,surface,regarded,temperature,instabilities,this,new,Both,experiments,provide,direct,evidence,emergent,lies,core,superconducting,mechanism
AB值:
0.530528
相似文献
Terahertz structured light:nonparaxial Airy imaging using silicon diffractive optics
Rusnè lva?kevi?iūtè-Povilauskienè;Paulius Kizevi?ius;Ernestas Nacius;Domas Jokubauskis;K?stutis lkamas;Alvydas Lisauskas;Natalia Alexeeva;leva Matulaitienè;Vytautas Jukna;Sergej Orlov;Linas Minkevi?ius;Gintaras Valu?is-Department of Optoelectronics,Center for Physical Sciences and Technology,Sauletekio av.3,Vilnius 10257,Lithuania;Department of Fundamental Research,Center for Physical Sciences and Technology,Saulètekio av.3,Vilnius 10257,Lithuania;Institute of Applied Electrodynamics&Telecommunications,Vilnius University,Saulètekio av.3,Vilnius 10257,Lithuania;CENTERA Labs.,Institute of High Pressure Physics PAS,ul.Sokolowska 29/37,Warsaw 01-142,Poland;Department of Organic Chemistry,Center for Physical Sciences and Technology,Saulètekio av.3,Vilnius 10257,Lithuania;Institute of Photonics and Nanotechnology,Department of Physics,Vilnius University,Saulètekio av.3,Vilnius 10257,Lithuania
Unveiling a critical stripy state in the triangular-lattice SU(4)spin-orbital model
Hui-Ke Jin;Rong-Yang Sun;Hong-Hao Tu;Yi Zhou-Department of Physics TQM,Technische Universit?t Munchen,James-Franck-Straβe 1,D-85748 Garching,Germany;Kavli Institute for Theoretical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China;Computational Materials Science Research Team,RIKEN Center for Computational Science(R-CCS),Kobe,Hyogo 650-0047,Japan;Quantum Computational Science Research Team,RIKEN Center for Quantum Computing(RQC),Wako,Saitama 351-0198,Japan;Institut für Theoretische Physik,Technische Universit?t Dresden,01062 Dresden,Germany;Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;Songshan Lake Materials Laboratory,Dongguan,Dongguan 523808,China;CAS Center for Excellence in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing 100190,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。